首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
内质网应激(endoplasmic reticulum stress,ERs)是内质网腔内错误折叠蛋白聚积的一种适应性反应,适度ERs通过激活未折叠蛋白反应起适应性的细胞保护作用,而过高和持久的ERs则通过诱导转录因子CHOP表达、激活caspase-12和c—Jun氨基末端激酶(JNK)等导致细胞凋亡。近年来,越来越多的研究提示内质网应激是神经退行性病变、2型糖尿病以及肥胖等疾病发生过程中的重要环节。对内质网应激的细胞效应分子机制进行综述。随着对ERs机制理解的深入,有可能会发现新的分子标志物或新的诊疗策略。  相似文献   

4.
Many inflammatory and infectious diseases are characterized by the activation of signaling pathways steaming from the endoplasmic reticulum (ER). These pathways, primarily associated with loss of ER homeostasis, are emerging as key regulators of inflammation and infection. Recent advances shed light on the mechanisms linking ER-stress and immune responses.  相似文献   

5.
Naringenin improves lipoprotein profile and protects against cardiovascular disease. ATF6 is an endoplasmic reticulum (ER) stress sensor with the same activation processes with sterol regulator SREBPs. Clinical data revealed that ATF6 expression was associated with plasma cholesterol level. Here, we investigated whether naringenin was involved in the regulation of cholesterol efflux and tested the role of ER stress-ATF6 in the naringenin function. Results showed that naringenin increased cholesterol efflux to both apoA-I and HDL and gene expressions in ABCA1, ABCG1 and LXRα in RAW264.7 macrophages. Naringenin inhibited the cleaved ATF6 nuclear translocation and its target GRP78 and XBP-1 expressions. Naringenin-induced cholesterol efflux was modulated by treatment with ER stress inhibitor 4-phenylbutyric acid, inducer tunicamycin and ATF6 overexpression in RAW264.7 and/or THP-1 cells, which suggested the naringenin functions were mediated through inhibiting ER stress-ATF6 pathway. Next, we found high-fat diet (HFD) supplemented with naringenin increased by >1.2-fold in cholesterol efflux capacity in primary peritoneal macrophage in apoE−/− mice compared to only HFD-fed mice. The increase was significantly reduced by tunicamycin treatment. Naringenin decreased GRP78, XBP-1 and nuclear ATF6 levels in peritoneal macrophage and aorta and reduced atherosclerotic lesion at aortic root, but reversed by tunicamycin. These confirmed participation of ER stress-ATF6 in naringenin efficacy. Finally, we found naringenin promoted AKT phosphorylation; PI3K inhibitor LY294002 treatment increased nuclear ATF6 and reduced naringenin-enhanced ABCA1 expression and cholesterol efflux. We concluded naringenin as a regulator for cholesterol efflux, and the regulation was mediated by ATF6 branch of ER stress and PI3K/AKT pathway.  相似文献   

6.
Excessive demands on the protein-folding capacity of the endoplasmic reticulum (ER) cause irremediable ER stress and contribute to cell loss in a number of cell degenerative diseases, including type 2 diabetes and neurodegeneration. The signals communicating catastrophic ER damage to the mitochondrial apoptotic machinery remain poorly understood. We used a biochemical approach to purify a cytosolic activity induced by ER stress that causes release of cytochrome c from isolated mitochondria. We discovered that the principal component of the purified pro-apoptotic activity is the proto-oncoprotein CRK (CT10-regulated kinase), an adaptor protein with no known catalytic activity. Crk(-/-) cells are strongly resistant to ER-stress-induced apoptosis. Moreover, CRK is cleaved in response to ER stress to generate an amino-terminal M(r)~14K fragment with greatly enhanced cytotoxic potential. We identified a putative BH3 (BCL2 homology 3) domain within this N-terminal CRK fragment, which sensitizes isolated mitochondria to cytochrome c release and when mutated significantly reduces the apoptotic activity of CRK in vivo. Together these results identify CRK as a pro-apoptotic protein that signals irremediable ER stress to the mitochondrial execution machinery.  相似文献   

7.
The lumen of the endoplasmic reticulum (ER) differs from the cytosol in its content of ions and other small molecules, but it is unclear whether the ER membrane is as impermeable as other membranes in the cell. Here, we have tested the permeability of the ER membrane to small, nonphysiological molecules. We report that isolated ER vesicles allow different chemical modification reagents to pass from the outside into the lumen with little hindrance. In permeabilized cells, the ER membrane allows the passage of a small, charged modification reagent that is unable to cross the plasma membrane or the lysosomal and trans-Golgi membranes. A larger polar reagent of approximately 5 kDa is unable to pass through the ER membrane. Permeation of the small molecules is passive because it occurs at low temperature in the absence of energy. These data indicate that the ER membrane is significantly more leaky than other cellular membranes, a property that may be required for protein folding and other functions of the ER.  相似文献   

8.
Recently, endoplasmic reticulum (ER) stress responses have been suggested to play important roles in maintaining various cellular functions and to underlie many tissue dysfunctions. In this study, we first identified cysteine-rich with EGF-like domains 2 (CRELD2) as an ER stress-inducible gene by analyzing a microarray analysis of thapsigargin (Tg)-inducible genes in Neuro2a cells. CRELD2 mRNA is also shown to be immediately induced by treatment with the ER stress-inducing reagents tunicamycin and brefeldin A. In the genomic sequence of the mouse CRELD2 promoter, we found a typical ER stress responsible element (ERSE), which is well conserved among various species. Using a luciferase reporter analyses, we demonstrated that the ERSE in mouse CRELD2 is functional and responds to Tg and ATF6-overexpression. Each mutation of ATF6- or NF-Y-binding sites in the ERSE of the mouse CRELD2 promoter dramatically decreased both the basal activity and responsiveness toward the ER stress stimuli. Our study suggests that CRELD2 could be a novel mediator in regulating the onset and progression of various ER stress-associated diseases.  相似文献   

9.
10.
11.
The endoplasmic reticulum as a protein-folding compartment   总被引:22,自引:0,他引:22  
The lumen of the endoplasmic reticulum (ER) provides a dynamic and efficient environment for the folding of proteins destined for secretion and for a variety of cellular compartments and membranes. Usually, the folding process begins on the nascent chains and is completed minutes or hours later during assembly of oligomers. It is assisted by molecular chaperones and folding enzymes, some of which are unique to the ER. Quality control and selective degradation systems ensure only conformationally mature proteins are transported from the ER.  相似文献   

12.
Plasma cells (PC) are the effector cells of the humoral Ab response. Unlike other dedicated secretory cells, they exist as two populations with opposite cell fates: short-lived and long-lived PC. Upon transformation they lead to an incurable neoplasia called multiple myeloma. In this study we have explored the molecular mechanism of PC death. Our data show that their apoptotic pathway is unique among other hemopoietic cells inasmuch as neither the death receptors nor the mitochondria play the central role. PC apoptosis is initiated by activation of Bax at the endoplasmic reticulum membrane and subsequent activation of the endoplasmic reticulum-associated caspase-4 before the release of mitochondrial apoptogenic factors. Together, our observations indicate that the cardinal function of PC (i.e., Ig secretion) is also the cause of their death.  相似文献   

13.
Formylglycine-generating enzyme (FGE) catalyzes the oxidation of a specific cysteine residue in nascent sulfatase polypeptides to formylglycine (FGly). This FGly is part of the active site of all sulfatases and is required for their catalytic activity. Here we demonstrate that residues 34-68 constitute an N-terminal extension of the FGE catalytic core that is dispensable for in vitro enzymatic activity of FGE but is required for its in vivo activity in the endoplasmic reticulum (ER), i.e. for generation of FGly residues in nascent sulfatases. In addition, this extension is needed for the retention of FGE in the ER. Fusing a KDEL retention signal to the C terminus of FGE is sufficient to mediate retention of an N-terminally truncated FGE but not sufficient to restore its biological activity. Fusion of FGE residues 1-88 to secretory proteins resulted in ER retention of the fusion protein. Moreover, when fused to the paralog of FGE (pFGE), which itself lacks FGly-generating activity, the FGE extension (residues 34-88) of this hybrid construct led to partial restoration of the biological activity of co-expressed N-terminally truncated FGE. Within the FGE N-terminal extension cysteine 52 is critical for the biological activity. We postulate that this N-terminal region of FGE mediates the interaction with an ER component to be identified and that this interaction is required for both the generation of FGly residues in nascent sulfatase polypeptides and for retention of FGE in the ER.  相似文献   

14.
Excess cellular cholesterol induces apoptosis in macrophages, an event likely to promote progression of atherosclerosis. The cellular mechanism of cholesterol-induced apoptosis is unknown but had previously been thought to involve the plasma membrane. Here we report that the unfolded protein response (UPR) in the endoplasmic reticulum is activated in cholesterol-loaded macrophages, resulting in expression of the cell death effector CHOP. Cholesterol loading depletes endoplasmic reticulum calcium stores, an event known to induce the UPR. Furthermore, endoplasmic reticulum calcium depletion, the UPR, caspase-3 activation and apoptosis are markedly inhibited by selective inhibition of cholesterol trafficking to the endoplasmic reticulum, and Chop-/- macrophages are protected from cholesterol-induced apoptosis. We propose that cholesterol trafficking to endoplasmic reticulum membranes, resulting in activation of the CHOP arm of the UPR, is the key signalling step in cholesterol-induced apoptosis in macrophages.  相似文献   

15.
Eukaryotic cells deal with accumulation of unfolded proteins in the endoplasmic reticulum (ER) by the unfolded protein response, involving the induction of molecular chaperones, translational attenuation, and ER-associated degradation, to prevent cell death. Here, we found that the autophagy system is activated as a novel signaling pathway in response to ER stress. Treatment of SK-N-SH neuroblastoma cells with ER stressors markedly induced the formation of autophagosomes, which were recognized at the ultrastructural level. The formation of green fluorescent protein (GFP)-LC3-labeled structures (GFP-LC3 “dots”), representing autophagosomes, was extensively induced in cells exposed to ER stress with conversion from LC3-I to LC3-II. In IRE1-deficient cells or cells treated with c-Jun N-terminal kinase (JNK) inhibitor, the autophagy induced by ER stress was inhibited, indicating that the IRE1-JNK pathway is required for autophagy activation after ER stress. In contrast, PERK-deficient cells and ATF6 knockdown cells showed that autophagy was induced after ER stress in a manner similar to the wild-type cells. Disturbance of autophagy rendered cells vulnerable to ER stress, suggesting that autophagy plays important roles in cell survival after ER stress.  相似文献   

16.
N-linked oligosaccharides devoid of glucose residues are transiently glucosylated directly from UDP-Glc in the endoplasmic reticulum. The reaction products have been identified, depending on the organisms, as protein-linked Glc1Man5-9GlcNAc2. Incubation of right side-sealed vesicles from rat liver with UDP-[14C]Glc, Ca2+ ions and denatured thyroglobulin led to the glucosylation of the macromolecule only when the vesicles had been disrupted previously by sonication or by the addition of detergents to the glucosylation mixture. Similarly, maximal glucosylation of denatured thyroglobulin required disruption of microsomal vesicles isolated from the protozoan Crithidia fasciculata. Treatment of the rat liver vesicles with trypsin led to the inactivation of the UDP-Glc:glycoprotein glucosyltransferase only when proteolysis was performed in the presence of detergents. The glycoprotein glucosylating activity could be solubilized upon sonication of right side-sealed vesicles in an isotonic medium, upon passage of them through a French press or by suspending the vesicles in an hypotonic medium. Moreover, the enzyme appeared in the aqueous phase when the vesicles were submitted to a Triton X-114/water partition. Solubilization was not due to proteolysis of a membrane-bound enzyme. The enzyme could also be solubilized from C. fasciculata microsomal vesicles by procedures not involving membrane disassembly. About 30% of endogenous glycoproteins glucosylated upon incubation of intact rat liver microsomal vesicles with UDP-[14C]GLc could be solubilized by sonication or by suspending the vesicles in 0.1 M Na2CO3. These and previous results show that the UDP-Glc:glycoprotein glucosyltransferase is a soluble protein present in the lumen of the endoplasmic reticulum. In addition, both soluble and membrane-bound glycoproteins may be glucosylated by the glycoprotein glucosylating activity.  相似文献   

17.
The endoplasmic reticulum: a multifunctional signaling organelle   总被引:25,自引:0,他引:25  
Berridge MJ 《Cell calcium》2002,32(5-6):235-249
  相似文献   

18.
1,3-beta-D-Glucan, a major filamentous component of the cell wall in the budding yeast Saccharomyces cerevisiae, is synthesized by 1,3-beta-glucan synthase (GS). Although a yeast gene whose product is required for GS activity in vitro, GNS1, was isolated and characterized, its role in GS function has remained unknown. In the current study we show that Deltagns1 cells accumulate a non-competitive and non-proteinous inhibitor(s) in the membrane fraction. Investigations of inhibitory activity on GS revealed that the inhibitor(s) is mainly present in the sphingolipid fraction. It is shown that Deltagns1 cells contain phytosphingosine (PHS), an intermediate in the sphingolipid biosynthesis, 30-fold more than wild-type cells do. The membrane fraction isolated from Deltasur2 cells contains an increased amount of dihydrosphingosine (DHS) and also exhibits reduced GS activity. Among constituents of the sphingolipid fraction, PHS and DHS show striking inhibition in a non-competitive manner. The intracellular level of DHS is much lower than that of PHS in wild-type cells, suggesting that PHS is the primary inhibitor of GS in vivo. The localization of PHS to the endoplasmic reticulum in wild-type cells coincides with that of the inhibitor(s) in Deltagns1 cells. Taken together, our results indicate that PHS is a potent inhibitor of yeast GS in vivo.  相似文献   

19.
Fertilization competency results from hormone-induced remodeling of oocytes into eggs. The signaling pathways that effect this change exemplify bistability, where brief hormone exposure irrevocably switches cell fate. In Xenopus, changes in Ca(2+) signaling epitomize such remodeling: The reversible Ca(2+) signaling phenotype of oocytes rapidly adapts to support irreversible propagation of the fertilization Ca(2+) wave. Here, we simultaneously resolved IP(3) receptor (IP(3)R) activity with endoplasmic reticulum (ER) structure to optically dissect the functional architecture of the Ca(2+) release apparatus underpinning this reorganization. We show that changes in Ca(2+) signaling correlate with IP(3)R redistribution from specialized ER substructures called annulate lamellae (AL), where Ca(2+) release activity is attenuated, into IP(3)R-replete patches in the cortical ER of eggs that support the fertilization Ca(2+) wave. These data show: first, that IP(3)R sensitivity is regulated with high spatial acuity even between contiguous ER regions; and second, that drastic reorganization of Ca(2+) signaling dynamics can be driven by subcellular redistribution in the absence of changes in channel number or molecular or familial Ca(2+) channel diversity. Finally, these results define a novel role for AL in Ca(2+) signaling. Because AL are prevalent in other scenarios of rapid cell division, further studies of their impact on Ca(2+) signaling are warranted.  相似文献   

20.
Germination and seedling growth of mungbean (Vigna radiata (L.) Wilczek) are accompanied by the incorporation of radioactive amino acids, glycerol, galactose, and glucosamine in an organelle fraction of the cotyledons which co-equilibrates with NADH-cytochrome-c-reductase activity at 1.13 g·cm–3 on isopycnic gradients containing 1 mM EDTA. Up to 20% of the newly synthesized proteins accumulate in this organelle fraction. The organelle fraction has been identified as rough endoplasmic reticulum (ER) on the basis of its increased density (1.16 g·cm–3) when 3 mM MgCl2 is included in all media. Seedling growth is also accompanied by a marked rise (more than 5-fold) in ER-associated NADH- and NADPH-cytochrome-c-reductase activity, and by the incorporation of59Fe into ER-associated heme. Other manifestations of the reorganization of the ER in the cotyledons include a relative increase in membrane-associated RNA (from 12% of total RNA after 12 h of imbibition to 23% after 6 d of growth), and a change in the pattern of polypeptides associated with the ER. These results provide further evidence for the extensive reorganization of the ER of the cotyledons which accompanies seedling growth. The reorganization includes the simultaneous breakdown of the pre-existing tubular ER and the biosynthesis of new ER components.This is the fourth paper in a series on the endoplasmic reticulum of mung-bean cotyledons. The first three papers are referenced as Gilkes and Chrispeels (in press); Harris and Chrispeels 1980; Van der Wilden et al. (in press)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号