首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO) are thought to act as gaseous neuromodulators in the brain across species. For example, in the brain of honeybee Apis mellifera, NO plays important roles in olfactory learning and discrimination, but the existence of H2S- and CO-mediated signaling pathways remains unknown. In the present study, we identified the genes of nitric oxide synthase (NOS), soluble guanylyl cyclase (sGC), cystathionine beta-synthase (CBS), and heme oxygenase (HO) from the honeybee brain. The honeybee brain contains at least one gene for each of NOS, CBS, and HO. The deduced proteins for NOS, CBS, and HO are thought to contain domains to generate NO, H2S, and CO, respectively, and to contain putative Ca2+/calmodulin-binding domains. On the other hand, the honeybee brain contains three subunits of sGC: sGCalpha1, sGCbeta1, and sGCbeta3. Phylogenetic analysis of sGC revealed that Apis sGCalpha1 and sGCbeta1 are closely related to NO- and CO-sensitive sGC subunits, whereas Apis sGCbeta3 is closely related to insect O2-sensitive sGC subunits. In addition, we performed in situ hybridization for Apis NOS mRNA and NADPH-diaphorase histochemistry in the honeybee brain. The NOS gene was strongly expressed in the optic lobes and in the Kenyon cells of the mushroom bodies. NOS activity was detected in the optic lobes, the mushroom bodies, the central body complex, the lateral protocerebral lobes, and the antennal lobes. These findings suggest that NO is involved in various brain functions and that H2S and CO can be endogenously produced in the honeybee brain.  相似文献   

2.
3.
Nitric oxide (NO) performs multiple physiological roles as a biological signaling molecule. The role of NO and cGMP signaling in embryonic stem (ES) cell-derived cardiomyocytes (CM) has been investigated but many questions remain. In this study, we examined the expression of the NO signaling pathway components nitric oxide synthase (NOS-1, 2, 3), soluble guanylyl cyclase (sGCalpha(1) and beta(1)) and protein kinase G (PKG) genes and sGC activity in murine ES cells subjected to differentiation by embryoid body (EB) formation. We found that in undifferentiated ES cells, NOS-1, NOS-3, and sGCbeta(1) were detected while NOS-2, sGCalpha(1), and PKG were very low or undetectable. When ES cells were subjected to differentiation, NOS-1 abruptly decreased within one day, NOS-2 mRNA became detectable after several days, and NOS-3 increased after 7-10 days. Levels of sGCalpha(1), sGCbeta(1), and PKG all increased gradually over a several day time course of differentiation in EB outgrowths. Analysis of sGC activity in cell lysates derived from undifferentiated ES cells revealed that NO could not stimulate cGMP. However, lysates from differentiated EB outgrowths produced abundant cGMP levels after NO stimulation. Purification of ES-cell derived CM revealed that mRNA expression of all the NOS isoforms was very low to absent while sGCalpha(1) and beta(1) subunit mRNAs were abundant and sGC-mediated cGMP production was apparent in this population of cells. These data suggest that cGMP-mediated NO signaling may play a minor role, if any, in undifferentiated ES cells but could be involved in the early differentiation events or physiological processes of ES cells or ES cell-derived lineages.  相似文献   

4.
The initiation of sporulation in Bacillus subtilis results primarily from phosphoryl group input into the phosphorelay by histidine kinases, the major kinase being kinase A. Kinase A is active as a homodimer, the protomer of which consists of an approximately 400-amino-acid N-terminal putative signal-sensing region and a 200-amino-acid C-terminal autokinase. On the basis of sequence similarity, the N-terminal region may be subdivided into three PAS domains: A, B, and C, located from the N- to the C-terminal end. Proteolysis experiments and two-hybrid analyses indicated that dimerization of the N-terminal region is accomplished through the PAS-B/PAS-C region of the molecule, whereas the most amino-proximal PAS-A domain is not dimerized. N-terminal deletions generated with maltose binding fusion proteins showed that an intact PAS-A domain is very important for enzymatic activity. Amino acid substitution mutations in PAS-A as well as PAS-C affected the in vivo activity of kinase A, suggesting that both PAS domains are required for signal sensing. The C-terminal autokinase, when produced without the N-terminal region, was a dimer, probably because of the dimerization required for formation of the four-helix-bundle phosphotransferase domain. The truncated autokinase was virtually inactive in autophosphorylation with ATP, whereas phosphorylation of the histidine of the phosphotransfer domain by back reactions from Spo0F~P appeared normal. The phosphorylated autokinase lost the ability to transfer its phosphoryl group to ADP, however. The N-terminal region appears to be essential both for signal sensing and for maintaining the correct conformation of the autokinase component domains.  相似文献   

5.
Neurotoxic effects of ammonia are mediated by increased accumulation of nitric oxide (NO), which combines with free radicals to form a highly toxic compound, peroxynitrite. Previous experiments in vivo and in vitro have suggested that this phenomenon engages neuron-derived NO and is coupled to changes in the accumulation of cGMP. The present study accounted for the facts that: (i) astrocytes, not neurons are the morphological target of ammonia, and (ii) both NO-dependent, soluble (sGC) and NO-independent, particulate guanylate cyclase (pGC) mediate cGMP production in the cells. Neocortical rat astrocytes were treated for 1 or 24 h with 5 mM ammonium chloride ("ammonia") and then subjected to: (i) cGMP measurement, and (ii) mRNA and/or protein expression analysis of alpha1 and beta1 subunits of sGC and two pGC forms: pGC-A and pGC-B. Treatment with ammonia for 1h increased accumulation of cGMP and sGCbeta1 mRNA expression, without producing significant changes in the protein expression. This was followed by a decrease of cGMP level at 24 h treatment, associated with a decreased expression of sGCbeta1 and sGCalpha1 mRNA and sGCbeta1 protein. Expression of pGC-A and pGC-B mRNA was elevated in ammonia-treated astrocytes after 24 h. Accordingly, increased cGMP accumulation was noted in the presence of a specific sGC inhibitor (ODQ). The results show that ammonia affects cGMP production in astrocytes, and that this may involve not only sGC but also pGC.  相似文献   

6.

Background  

The soluble guanylyl cyclase (sGC) is a heterodimeric enzyme that, upon activation by nitric oxide, stimulates the production of the second messenger cGMP. Each sGC subunit harbor four domains three of which are used for heterodimerization: H-NOXA/H-NOBA domain, coiled-coil domain (CC), and catalytic guanylyl cyclase domain. The CC domain has previously been postulated to be part of a larger CC family termed the signaling helix (S-helix) family. Homodimers of sGC have also been observed but are not functionally active yet are likely transient awaiting their intended heterodimeric partner.  相似文献   

7.
In a newly characterized cultured porcine pulmonary artery (PA) preparation, 24-h treatment with the nitric oxide (NO) donor (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NO) decreased the response to acutely applied DETA-NO compared with 24-h control (-log EC(50) 6.55 +/- 0.12 and 5.02 +/- 0.21, respectively). Treatment of PA with the cell-permeable superoxide dismutase mimetic, Mn(III) tetra(4-benzoic acid) porphyrin chloride, did not change NO responsiveness in either freshly prepared or 24-h DETA-NO-treated PA. cGMP and cAMP phosphodiesterase activities were approximately equal in PA. Twenty-four-hour DETA-NO treatment did not change either cGMP or cAMP phosphodiesterase activities. Twenty-four hours in culture had no significant effect on soluble guanylyl cyclase (sGC) subunit mRNA expression, but 24-h DETA-NO treatment significantly decreased the expression of both sGCalpha(1) and sGCbeta(1). sGCbeta(1) protein expression was 42 +/- 4 ng/mg soluble protein. Twenty-four hours in culture without and with DETA-NO reduced sGCbeta(1) protein expression (36 +/- 3 and 31 +/- 3 ng/mg soluble protein, respectively, P < 0.025). Basal tissue cGMP [(cGMP)(i)] was significantly increased, and NO-induced (cGMP)(i) was significantly decreased by 24-h DETA-NO treatment. (cGMP)(i) normalized to the amount of sGC protein expressed in PA was significantly lower in PA treated for 24 h with DETA-NO compared with both freshly isolated and 24-h cultured PA. We conclude that prolonged NO treatment induces decreased acute NO responsiveness in part by decreasing both sGC expression and sGC-specific activity.  相似文献   

8.
Zoltowski BD  Crane BR 《Biochemistry》2008,47(27):7012-7019
The fungal photoreceptor Vivid (VVD) plays an important role in the adaptation of blue-light responses in Neurospora crassa. VVD, an FAD-binding LOV (light, oxygen, voltage) protein, couples light-induced cysteinyl adduct formation at the flavin ring to conformational changes in the N-terminal cap (Ncap) of the VVD PAS domain. Size-exclusion chromatography (SEC), equilibrium ultracentrifugation, and static and dynamic light scattering show that these conformational changes generate a rapidly exchanging VVD dimer, with an expanded hydrodynamic radius. A three-residue N-terminal beta-turn that assumes two different conformations in a crystal structure of a VVD C71V variant is essential for light-state dimerization. Residue substitutions at a critical hinge between the Ncap and PAS core can inhibit or enhance dimerization, whereas a Tyr to Trp substitution at the Ncap-PAS interface stabilizes the light-state dimer. Cross-linking through engineered disulfides indicates that the light-state dimer differs considerably from the dark-state dimer found in VVD crystal structures. These results verify the role of Ncap conformational changes in gating the photic response of N. crassa and indicate that LOV-LOV homo- or heterodimerization may be a mechanism for regulating light-activated gene expression.  相似文献   

9.
10.
Per-Arnt-Sim (PAS) domains play a critical role in signal transduction in multidomain proteins by sensing diverse environmental signals and regulating the activity of output domains. Multiple PAS domains are often found within a single protein. The NifL regulatory protein from Azotobacter vinelandii contains tandem PAS domains, the most N-terminal of which, PAS1, contains a FAD cofactor and is responsible for redox sensing, whereas the second PAS domain, PAS2, has no apparent cofactor and its function is unknown. Amino acid substitutions in PAS2 were identified that either lock NifL in a form that constitutively inhibits NifA or that fail to respond to the redox status, suggesting that PAS2 plays a pivotal role in transducing the redox signal from PAS1 to the C-terminal output domains. The isolated PAS2 domain is a homodimer in solution and the subunits are in rapid exchange. PAS2 dimerization is maintained in the redox signal transduction mutants, but is inhibited by substitutions in PAS2 that lock NifL in the inhibitory conformer. Our results support a model for signal transduction in NifL, whereby redox-dependent conformational changes in PAS1 are relayed to the C-terminal domains via changes in the quaternary structure of the PAS2 domain.  相似文献   

11.
The Per-ARNT-Sim (PAS) domain is a conserved α/β fold present within a plethora of signalling proteins from all kingdoms of life. PAS domains are often dimeric and act as versatile sensory and interaction modules to propagate environmental signals to effector domains. The NifL regulatory protein from Azotobacter vinelandii senses the oxygen status of the cell via an FAD cofactor accommodated within the first of two amino-terminal tandem PAS domains, termed PAS1 and PAS2. The redox signal perceived at PAS1 is relayed to PAS2 resulting in conformational reorganization of NifL and consequent inhibition of NifA activity. We have identified mutations in the cofactor-binding cavity of PAS1 that prevent 'release' of the inhibitory signal upon oxidation of FAD. Substitutions of conserved β-sheet residues on the distal surface of the FAD-binding cavity trap PAS1 in the inhibitory signalling state, irrespective of the redox state of the FAD group. In contrast, substitutions within the flanking A'α-helix that comprises part of the dimerization interface of PAS1 prevent transmission of the inhibitory signal. Taken together, these results suggest an inter-subunit pathway for redox signal transmission from PAS1 that propagates from core to the surface in a conformation-dependent manner requiring a flexible dimer interface.  相似文献   

12.
13.
14.
15.
16.
Soluble guanylate cyclase (sGC) is a heterodimeric heme protein of ~150 kDa and the primary nitric oxide receptor. Binding of NO stimulates cyclase activity, leading to regulation of cardiovascular physiology and providing attractive opportunities for drug discovery. How sGC is stimulated and where candidate drugs bind remains unknown. The α and β sGC chains are each composed of Heme‐Nitric Oxide Oxygen (H‐NOX), Per‐ARNT‐Sim (PAS), coiled‐coil and cyclase domains. Here, we present the crystal structure of the α1 PAS domain to 1.8 Å resolution. The structure reveals the binding surfaces of importance to heterodimer function, particularly with respect to regulating NO binding to heme in the β1 H‐NOX domain. It also reveals a small internal cavity that may serve to bind ligands or participate in signal transduction.  相似文献   

17.
Soluble guanylyl cyclase (sGC) is the major cytosolic receptor for nitric oxide (NO) that converts GTP into the second messenger cGMP in a NO-dependent manner. Other factors controlling this key enzyme are intracellular proteins such as Hsp90 and PSD95, which bind to sGC and modulate its activity, stability, and localization. To date little is known about the effects of posttranslational modifications of sGC, although circumstantial evidence suggests that reversible phosphorylation may contribute to sGC regulation. Here we demonstrate that inhibitors of protein-tyrosine phosphatases such as pervanadate and bisperoxo(1,10-phenanthroline)oxovanadate(V) as well as reactive oxygen species such as H2O2 induce specific tyrosine phosphorylation of the beta1 but not of the alpha1 subunit of sGC. Tyrosine phosphorylation of sGCbeta1 is also inducible by pervanadate and H2O2 in intact PC12 cells, rat aortic smooth muscle cells, and in rat aortic tissues, indicating that tyrosine phosphorylation of sGC may also occur in vivo. We have mapped the major tyrosine phosphorylation site to position 192 of beta1, where it forms part of a highly acidic phospho-acceptor site for Src-like kinases. In the phosphorylated state Tyr(P)-192 exposes a docking site for SH2 domains and efficiently recruits Src and Fyn to sGCbeta1, thereby promoting multiple phosphorylation of the enzyme. Our results demonstrate that sGC is subject to tyrosine phosphorylation and interaction with Src-like kinases, revealing an unexpected cross-talk between the NO/cGMP and tyrosine kinase signaling pathways at the level of sGC.  相似文献   

18.
Ether-a-go-go potassium channels have large intracellular regions containing ‘Per-Ant-Sim’ (PAS) and cyclic nucleotide binding (cNBD) domains at the N- and C-termini, respectively. In heag1 and heag2 channels, recent studies have suggested that the N- and C-terminal domains interact, and affect activation properties. Here, we have studied the effect of mutations of residues on the surfaces of PAS and cNBD domains. For this, we introduced alanine and lysine mutations in heag1 channels, and recorded currents by two-electrode voltage clamp. In both the PAS domain and the cNBD domain, contiguous areas of conserved residues on the surfaces of these domains were found which affected the activation kinetics of the channel. Next, we investigated possible effects of mutations on domain interactions of PAS and cNBD proteins in heag2 by co-expressing these domain proteins followed by analysis with native gels and western blotting. We found oligomeric association between these domains. Mutations F30A and A609K (on the surfaces of the PAS and cNBD domains, respectively) affected oligomeric compositions of these domains when proteins for PAS and cNBD domains were expressed together. Taken together, the data suggest that the PAS and cNBD domains form interacting oligomers that have roles in channel function.  相似文献   

19.
The C2H2 zinc finger is the most prevalent protein motif in the mammalian proteome. Two C2H2 fingers in Ikaros are dedicated to homotypic interactions between family members. We show here that these fingers comprise a bona fide dimerization domain. Dimerization is highly selective, however, as homologous domains from the TRPS-1 and Drosophila Hunchback proteins support homodimerization, but not heterodimerization with Ikaros. Ikaros-Hunchback selectivity is determined by 11 residues concentrated within the alpha-helical regions typically involved in base recognition. Preferential homodimerization of one chimeric protein predicts a parallel dimer interface and establishes the feasibility of creating novel dimer specificities. These results demonstrate that the C2H2 motif provides a versatile platform for both sequence-specific protein-nucleic acid interactions and highly specific dimerization.  相似文献   

20.
Diatomic ligand discrimination by soluble guanylyl cyclase (sGC) is paramount to cardiovascular homeostasis and neuronal signaling. Nitric oxide (NO) stimulates sGC activity 200-fold compared with only four-fold by carbon monoxide (CO). The molecular details of ligand discrimination and differential response to NO and CO are not well understood. These ligands are sensed by the heme domain of sGC, which belongs to the heme nitric oxide oxygen (H-NOX) domain family, also evolutionarily conserved in prokaryotes. Here we report crystal structures of the free, NO-bound, and CO-bound H-NOX domains of a cyanobacterial homolog. These structures and complementary mutational analysis in sGC reveal a molecular ruler mechanism that allows sGC to favor NO over CO while excluding oxygen, concomitant to signaling that exploits differential heme pivoting and heme bending. The heme thereby serves as a flexing wedge, allowing the N-terminal subdomain of H-NOX to shift concurrent with the transition of the six- to five-coordinated NO-bound state upon sGC activation. This transition can be modulated by mutations at sGC residues 74 and 145 and corresponding residues in the cyanobacterial H-NOX homolog.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号