首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The function of the non-homologous region of a family 3 beta-glucosidase from Agrobacterium tumefaciens (Cbg1) was studied by analyzing the properties of mutant enzymes that have internal truncated amino acid sequences in the region. Five truncated mutants named Cbg1-d4, Cbg1-d31, Cbg1-d62, Cbg1-d89, and Cbg1-d119 having deletions of 4, 31, 62, 89, and 119 amino acid residues starting from Phe417, respectively, were expressed in Escherichia coli and purified. All the mutants exhibited beta-glucosidase activity, indicating that the non-homologous region was not essential for the activity. The truncation caused thermal instability, decrease in pK(a) of the proton donor residue (Glu616), and deficient transglycosylation activity. The thermal stability and the pK(a) of Glu616 were partially recovered with longer truncation, suggesting that the truncation perturbed the structure and that their presence in the region was not essential. The main role of the non-homologous region could be formation of a hydrophobic atmosphere at the acceptor site to make the enzyme suitable for hydrolyzing hydrophobic glucosides.  相似文献   

2.
3.
Even in the absence of the classical Ti plasmid-encoded cytokinin biosynthetic genes ipt and tzs, Agrobacterium tumefaciens strains still release significant amounts of the cytokinin isopentenyladenine (iP) into the culture medium (R.W. Kaiss-Chapman and R.O. Morris [1977] Biochem Biophys Res Commun 76: 453-459). A potential source of the iP is isopentenylated transfer RNA (tRNA), which, in turn, is synthesized by the activity of tRNA:isopentenyltransferase encoded by the bacterial miaA gene. To determine whether secreted iP had its origin in isopentenylated tRNA, a miaA- deletion/insertion mutant was prepared and reconstructed in Agrobacterium tumefaciens in vivo. The mutant no longer possessed tRNA:isopentenylation activity and no longer released iP into the extracellular medium. Transfer RNA therefore makes a small but significant contribution to the total amount of cytokinin normally secreted by Agrobacterium strains. tRNA-mediated synthesis may also account for cytokinin production by other plant-associated bacteria, such as Rhizobia, that have been reported to secrete similarly low levels of nonhydroxylated cytokinins.  相似文献   

4.
The nopaline-type Ti plasmid T37 of Agrobacterium tumefaciens carries two distinct genes that encode enzymes involved in cytokinin biosynthesis. In this report, we show that the level of expression of one of these genes was increased dramatically by culture conditions that increased the expression of Ti plasmid virulence genes, including coculture with plant cells or treatment with acetosyringone, a plant phenolic compound. When this nopaline-type Ti plasmid gene was introduced into Agrobacterium strains containing an octopine-type Ti plasmid, similar induction of expression by culture conditions was observed, and analysis of virulence region mutants demonstrated that this induction was under the control of the virA and virG regulatory loci. We further show that induction was strongly pH dependent in octopine strains but, under the conditions examined, pH independent in nopaline strains.  相似文献   

5.
Agrobacterium tumefaciens strains carrying pTiBo542 induce large, fast-appearing tumors and have an unusually wide host range. A clone bank was made from this 250-kilobase plasmid in a wide-host-range vector, and restriction maps were determined for BamHI and SalI. The virulence genes, transferred DNA genes, plasmid incompatibility region, and a region that inhibits growth of certain A. tumefaciens strains were localized. The six virulence genes and two tms genes were highly homologous to the genes of pTiA6, but the tmr gene was not. Mutations in each of the six vir loci of pTiA6 were complemented by clones from the vir region of pTiBo542.  相似文献   

6.
Agrobacterium tumefaciens and Agrobacterium rhizogenes are closely related plant pathogens that cause different diseases, crown gall and hairy root. Both diseases result from transfer, integration, and expression of plasmid-encoded bacterial genes located on the transferred DNA (T-DNA) in the plant genome. Bacterial virulence (Vir) proteins necessary for infection are also translocated into plant cells. Transfer of single-stranded DNA (ssDNA) and Vir proteins requires a type IV secretion system, a protein complex spanning the bacterial envelope. A. tumefaciens translocates the ssDNA-binding protein VirE2 into plant cells, where it binds single-stranded T-DNA and helps target it to the nucleus. Although some strains of A. rhizogenes lack VirE2, they are pathogenic and transfer T-DNA efficiently. Instead, these bacteria express the GALLS protein, which is essential for their virulence. The GALLS protein can complement an A. tumefaciens virE2 mutant for tumor formation, indicating that GALLS can substitute for VirE2. Unlike VirE2, GALLS contains ATP-binding and helicase motifs similar to those in TraA, a strand transferase involved in conjugation. Both GALLS and VirE2 contain nuclear localization sequences and a C-terminal type IV secretion signal. Here we show that mutations in any of these domains abolished the ability of GALLS to substitute for VirE2.  相似文献   

7.
? Successful genetic transformation of plants by Agrobacterium tumefaciens requires the import of bacterial T-DNA and virulence proteins into the plant cell that eventually form a complex (T-complex). The essential components of the T-complex include the single stranded T-DNA, bacterial virulence proteins (VirD2, VirE2, VirE3 and VirF) and associated host proteins that facilitate the transfer and integration of T-DNA. The removal of the proteins from the T-complex is likely achieved by targeted proteolysis mediated by VirF and the plant ubiquitin proteasome complex. ? We evaluated the involvement of the host SKP1/culin/F-box (SCF)-E3 ligase complex and its role in plant transformation. Gene silencing, mutant screening and gene expression studies suggested that the Arabidopsis homologs of yeast SKP1 (suppressor of kinetochore protein 1) protein, ASK1 and ASK2, are required for Agrobacterium-mediated plant transformation. ? We identified the role for SGT1b (suppressor of the G2 allele of SKP1), an accessory protein that associates with SCF-complex, in plant transformation. We also report the differential expression of many genes that encode F-box motif containing SKP1-interacting proteins (SKIP) upon Agrobacterium infection. ? We speculate that these SKIP genes could encode the plant specific F-box proteins that target the T-complex associated proteins for polyubiquitination and subsequent degradation by the 26S proteasome.  相似文献   

8.
Little is known about the effect of the host on the genetic stability of bacterial plant pathogens. Crown gall, a plant disease caused by Agrobacterium tumefaciens, may represent a useful model to study this effect. Indeed, our previous observations on the natural occurrence and origin of nonpathogenic agrobacteria suggest that the host plant might induce loss of pathogenicity in populations of A. tumefaciens. Here we report that five different A. tumefaciens strains initially isolated from apple tumors produced up to 99% nonpathogenic mutants following their reintroduction into axenic apple plants. Two of these five strains were also found to produce mutants on pear and/or blackberry plants. Generally, the mutants of the apple isolate D10B/87 were altered in the tumor-inducing plasmid, harboring either deletions in this plasmid or point mutations in the regulatory virulence gene virG. Most of the mutants originating from the same tumor appeared to be of clonal origin, implying that the host plants influenced agrobacterial populations by favoring growth of nonpathogenic mutants over that of wild-type cells. This hypothesis was confirmed by coinoculation of apple rootstocks with strain D10B/87 and a nonpathogenic mutant.  相似文献   

9.
Agrobacterium tumefaciens is a plant pathogen that incites crown gall tumors by transferring to and expressing a portion of a resident plasmid in plant cells. Currently, little is known about the host response to Agrobacterium infection. Using suppressive subtractive hybridization and DNA macroarrays, we identified numerous plant genes that are differentially expressed during early stages of Agrobacterium-mediated transformation. Expression profiling indicates that Agrobacterium infection induces plant genes necessary for the transformation process while simultaneously repressing host defense response genes, thus indicating successful utilization of existing host cellular machinery for genetic transformation purposes. A comparison of plant responses to different strains of Agrobacterium indicates that transfer of both T-DNA and Vir proteins modulates the expression of host genes during the transformation process.  相似文献   

10.
VirA-VirG two-component system regulates the vir (virulence) operon in response to specific host factors (xenognosins) in the plant pathogen Agrobacterium tumefaciens. Using whole cell assays, stable inhibitors inspired by the labile natural benzoxazinone inhibitor HDMBOA are developed. It is found that aromatic aldehydes represent a minimal structural unit for activity. In particular, 3-hydroxy-4,6-dimethoxy-3H-isobenzofuran-1-one (HDI) was found to have the highest activity, making it the most potent developed inhibitor of virulence gene expression in Agrobacterium.  相似文献   

11.
Agrobacterium tumefaciens and Rhizobium meliloti carry related genetic loci which have important roles in virulence and symbiosis. Previously, it was shown that two virulence loci of A. tumefaciens, chvA and chvB, are related to two R. meliloti symbiosis loci, ndvA and ndvB, respectively (T. Dylan, L. Ielpi, S. Stanfield, L. Kashyap, C. Douglas, M. Yanofsky, E. Nester, D. R. Helinski, and G. Ditta, Proc. Natl. Acad. Sci. USA 83:4403-4407, 1986). Here we show that these two phytobacteria possess additional related virulence/symbiosis genes. Results of genetic complementation and DNA hybridization experiments indicate that the pscA virulence locus of A. tumefaciens is structurally and functionally related to the exoC symbiosis locus of R. meliloti. Thus, A. tumefaciens and R. meliloti bear at least three related genetic loci that have crucial roles in establishing the interactions that each bacterium has with its respective host plants.  相似文献   

12.
Experiments using different species of the plant Nicotiana and strains of the bacterium Agrobacterium tumefaciens showed that teratoma formation from crown galls was dependent on the combination of bacterial Ti plasmid and host plant used.  相似文献   

13.
The phytopathogen Agrobacterium tumefaciens incites the production of crown-gall on a wide range of dicotyledonous plants. Gall formation is dependent upon indole-3-acetic acid (IAA) and cytokinin production by the transformed plant cells. Upon incubation of Agrobacterium tumefaciens C58 with the plant hormone indole-3-acetic acid (IAA), bacterial virulence on cucumber plants was stimulated up to tenfold. Stimulation was maximized after exposure of bacteria to 50 or 100 μg ml-1 IAA for 3 h. This was shown to be at the early log phase of bacterial growth.
The authors suggest that the excretion of IAA by the transformed plant cells stimulates bacterial virulence mechanism(s) encoded by the Ti plasmid, the chromosome, or both.  相似文献   

14.
Crude cell wall preparations from Cicer arietinum L. cell suspension cultures show high activity for the hydrolysis of coniferyl alcohol beta-D-glucoside (coniferin). Various beta-glucosidase activities could be solubilized from these preparations by 0.5 M NaCl treatment and one of these could be shown to possess a high activity for the hydrolysis of coniferin. The enzyme activities were purified to near homogeneity by Sephadex G-200 and CM-Sephadex chromatography. Isoelectric focussing indicated the occurrence of beta-glucosidase isoenzymes with identical catalytic activity (pI 8.5-10). Molecular weights were determined as 110 000, with two subunits of 63 000 and 43 000. Maximum hydrolytic activity is at pH 5. The beta-glucosidase isoenzymes catalyze the hydrolysis of various beta-glucosides with aromatic aglycone structure and different sugar moieties. However, coniferin has been found to be one of the best substrates (km = 0.8 mM; V = 6 mumol.min-1.mg protein-1) for these beta-glucosidase isoenzymes. The data suggest that beta-glucosidase-catalyzed reaction might be involved in lignification of these plant cell cultures.  相似文献   

15.
Agrobacterium tumefaciens and Agrobacterium rhizogenes transfer plasmid-encoded genes and virulence (Vir) proteins into plant cells. The transferred DNA (T-DNA) is stably inherited and expressed in plant cells, causing crown gall or hairy root disease. DNA transfer from A. tumefaciens into plant cells resembles plasmid conjugation; single-stranded DNA (ssDNA) is exported from the bacteria via a type IV secretion system comprised of VirB1 through VirB11 and VirD4. Bacteria also secrete certain Vir proteins into plant cells via this pore. One of these, VirE2, is an ssDNA-binding protein crucial for efficient T-DNA transfer and integration. VirE2 binds incoming ssT-DNA and helps target it into the nucleus. Some strains of A. rhizogenes lack VirE2, but they still transfer T-DNA efficiently. We isolated a novel gene from A. rhizogenes that restored pathogenicity to virE2 mutant A. tumefaciens. The GALLS gene was essential for pathogenicity of A. rhizogenes. Unlike VirE2, GALLS contains a nucleoside triphosphate binding motif similar to one in TraA, a strand transferase conjugation protein. Despite their lack of similarity, GALLS substituted for VirE2.  相似文献   

16.
We investigated the effects of salicylic acid (SA) and systemic acquired resistance (SAR) on crown gall disease caused by Agrobacterium tumefaciens. Nicotiana benthamiana plants treated with SA showed decreased susceptibility to Agrobacterium infection. Exogenous application of SA to Agrobacterium cultures decreased its growth, virulence, and attachment to plant cells. Using Agrobacterium whole-genome microarrays, we characterized the direct effects of SA on bacterial gene expression and showed that SA inhibits induction of virulence (vir) genes and the repABC operon, and differentially regulates the expression of many other sets of genes. Using virus-induced gene silencing, we further demonstrate that plant genes involved in SA biosynthesis and signaling are important determinants for Agrobacterium infectivity on plants. Silencing of ICS (isochorismate synthase), NPR1 (nonexpresser of pathogenesis-related gene 1), and SABP2 (SA-binding protein 2) in N. benthamiana enhanced Agrobacterium infection. Moreover, plants treated with benzo-(1,2,3)-thiadiazole-7-carbothioic acid, a potent inducer of SAR, showed reduced disease symptoms. Our data suggest that SA and SAR both play a major role in retarding Agrobacterium infectivity.  相似文献   

17.
The virB gene products of the Agrobacterium tumefaciens tumor-inducing (Ti) plasmid have been proposed to mediate T-DNA transport through the bacterial cell wall into plant cells. Previous genetic analysis of the approximately 9.5-kilobase-pair virB operon has been limited to transposon insertion mutagenesis. Due to the polarity of the transposon insertions, only the last gene in the operon, virB11, is known to provide an essential virulence function. We have now begun to assess the contribution of the other virB genes to virulence. First, several previously isolated Tn3-HoHo1 insertions in the 3' end of the virB operon were precisely mapped by nucleotide sequence analysis. Protein extracts from A. tumefaciens strains harboring these insertions on the Ti plasmid were subjected to immunostaining analysis with VirB4-, VirB10-, and VirB11-specific antisera to determine the effect of the insertion on virB gene expression. In this manner, avirulent mutants containing polar insertions in the virB9 and virB10 genes were identified. To carry out a complementation analysis with these virB mutants, expression vectors were constructed that allow cloned genes to be expressed from the virB promoter in A. tumefaciens. These plasmids were used to express combinations of the virB9, virB10, and virB11 genes in trans in the virB insertion mutants, thereby creating strains lacking only one of these three virB gene products. Virulence assays on Kalanchoe daigremontiana demonstrated that in addition to virB11, the virB9 and virB10 genes are required for tumorigenicity.  相似文献   

18.
Inner membranes of Azospirillum brasilense incubated with UDP-glucose were unable to synthesize beta-(1-2) glucan and lacked the 235-kilodalton intermediate protein known to be involved in the synthesis of beta-(1-2) glucan in Agrobacterium tumefaciens and Rhizobium meliloti. Inner membranes of A. brasilense strains carrying a cosmid containing the chromosomal virulence genes chvA and chvB of Agrobacterium tumefaciens formed beta-(1-2) glucan in vitro and synthesized the 235-kilodalton intermediate protein. No DNA homology to the chvB region was found in different wild-type strains of A. brasilense, but the introduction of a cosmid containing the Agrobacterium tumefaciens chvA and chvB regions yielded strains in which DNA hybridization with the chvB region was detected, provided that the strains were grown under an antibiotic selective pressure.  相似文献   

19.
Despite the widespread use of Agrobacterium tumefaciens to transfer genes into plant systems, host responses to this plant pathogen are not well understood. The present study shows that disarmed strains of Agrobacterium induce distinct host responses when infiltrated into leaves of Nicotiana tabacum. The responses are limited to the infiltrated zone and consist of i) induction of pathogenesis-related (PR) gene PR-1 expression and resistance to subsequent infection with tobacco mosaic virus, ii) chlorosis and loss of chloroplast rRNAs, and iii) inhibition of leaf expansion. Induction of the latter two sets of responses depends on the age of the leaf and is most apparent in young leaves. Strains with or without binary vectors induce all the responses, showing that DNA transfer is neither required nor inhibitory. A. tumefaciens cured of the tumor-inducing (Ti) plasmid is slightly defective for induction of the three responses, showing that Ti plasmid-encoded factors produced by the disarmed strains contribute only slightly. However, T-DNA-encoded factors alter at least one of the host responses, because infiltration with the oncogenic strain C58 induced more pronounced chlorosis than the disarmed control. Auxin is one of the T-DNA products responsible for disease induction by oncogenic A. tumefaciens. We found that C58-infiltrated zones-but not those infiltrated with the disarmed control-have increased levels of miR393, a microRNA that represses auxin signaling and contributes to antibacterial resistance.  相似文献   

20.
Nair GR  Liu Z  Binns AN 《Plant physiology》2003,133(3):989-999
Isogenic strains of Agrobacterium tumefaciens carrying pTiC58, pAtC58, or both were constructed and assayed semiquantitatively and quantitatively for virulence and vir gene expression to study the effect of the large 542-kb accessory plasmid, pAtC58, on virulence. Earlier studies indicate that the att (attachment) genes of A. tumefaciens are crucial in the ability of this soil phytopathogen to infect susceptible host plants. Mutations in many att genes, notably attR and attD, rendered the strain avirulent. These genes are located on pAtC58. Previous work also has shown that derivatives of the wild-type strain C58 cured of pAtC58 are virulent as determined by qualitative virulence assays and, hence, pAtC58 was described as nonessential for virulence. We show here that the absence of pAtC58 in pTiC58-containing strains results in reduced virulence but that disruption of the attR gene does not result in avirulence or a reduction in virulence. Our studies indicate that pAtC58 has a positive effect on vir gene induction as revealed by immunoblot analysis of Vir proteins and expression of a PvirB::lacZ fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号