首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We could not reconcile reported relationships between lung resistance measurements and lung volume with bronchographic and anatomic studies showing that airway diameters change monotonically with lung volume and that small airways change diameter proportionately at least as much as large ones. Accordingly we measured central and peripheral airways resistances with a new technique. The relevant pressures were measured with a tracheal cannula, a wedged retrograde catheter, and two parenchymal needles in seven open-chested dogs while pleural pressure was oscillated at 1 Hz. In contrast to previous studies, the volume dependency of peripheral resistance was at least as great as that of central resistance with vagi intact, the volume dependencies of central and peripheral resistances were not abolished by vagotomy, and neither resistance increased systematically at high volumes. Volume dependency of central resistance resembled predictions for isotropic expansion of airways with vagi cut but increased with bronchomotor tone. These results fit generally with bronchographic data. Previous studies may have been affected by volume dependency due to "tissue resistance" and catheter phase lags.  相似文献   

2.
3.
Lung compliance is generally considered to represent a blend of surface and tissue forces, and changes in compliance in vivo are commonly used to indicate changes in surface forces. There are, however, theoretical arguments that would allow contraction of airway smooth muscle to affect substantially the elasticity of the lung. In the present study we evaluated the role of conducting airway contraction on lung compliance in vivo by infusing methacholine (MCh) at a constant rate into the bronchial circulation. With a steady-state MCh infusion of 2.4 micrograms/min into the bronchial perfusate (perfusate concentration = 0.7 microM), there was an approximate doubling of lung resistance and a 50% fall in dynamic compliance. There were also significant decreases in chord compliance measured from the quasi-static pressure-volume curves and in total lung capacity and residual volume. When the same infusion rate was administered into the pulmonary artery, no changes in lung mechanics were observed. These results indicate that the conducting airways may have a major role in regulating lung elasticity. This linkage between airway contraction and lung compliance may account for the common observation that pharmacological challenges given to the lung usually result in similar changes in lung compliance and airway conductance. Our results also suggest the possibility that the lung tissue resistance, which dominates the measurement of lung resistance in many species, might in fact reflect the physical properties of conducting airways.  相似文献   

4.
We present a new one-dimensional model of gas transport in the human adult lung. The model comprises asymmetrically branching airways, and heterogeneous interregional ventilation. Our model differs from previous models in that we consider the asymmetry in both the conducting and the acinar airways in detail. Another novelty of our model is that we use simple analytical relationships to produce physiologically realistic models of the conducting and acinar airway trees. With this new model, we investigate the effects of airway asymmetry and heterogeneous interregional ventilation on the phase III slope in multibreath washouts. The model predicts the experimental trend of the increase in the phase III slope with breath number in multibreath washout studies for nitrogen, SF(6) and helium. We confirm that asymmetrical branching in the acinus controls the magnitude of the first-breath phase III slope and find that heterogeneous interregional ventilation controls the way in which the slope changes with subsequent breaths. Asymmetry in the conducting airways appears to have little effect on the phase III slope. That the increase in slope appears to be largely controlled by interregional ventilation inhomogeneities should be of interest to those wishing to use multibreath washouts to detect the location of the structural abnormalities within the lung.  相似文献   

5.
The structure and functions of the airways of the lung change dramatically along their lengths. Large-diameter conducting airways are supported by cartilaginous rings and smooth muscle tissue and are lined by ciliated and secretory epithelial cells that are involved in mucociliary clearance. Smaller peripheral airways formed during branching morphogenesis are lined by cuboidal and squamous cells that facilitate gas exchange to a network of fine capillaries. The factors that mediate formation of these changing cell types and structures along the length of the airways are unknown. We report here that conditional expression of fibroblast growth factor (FGF)-18 in epithelial cells of the developing lung caused the airway to adopt structural features of proximal airways. Peripheral lung tubules were markedly diminished in numbers, whereas the size and extent of conducting airways were increased. Abnormal smooth muscle and cartilage were found in the walls of expanded distal airways, which were accompanied by atypically large pulmonary blood vessels. Expression of proteins normally expressed in peripheral lung tubules, including SP-B and pro-SP-C, was inhibited. FGF-18 mRNA was detected in normal mouse lung in stromal cells surrounding proximal airway cartilage and in peripheral lung mesenchyme. Effects were unique to FGF-18 because expression of other members of the FGF family had different consequences. These data show that FGF-18 is capable of enhancing proximal and inhibiting peripheral programs during lung morphogenesis.  相似文献   

6.
The effect of bronchoconstriction on airway resistance is known to be spatially heterogeneous and dependent on tidal volume. We present a model of a single terminal airway that explains these features. The model describes a feedback between flow and airway resistance mediated by parenchymal interdependence and the mechanics of activated smooth muscle. The pressure-tidal volume relationship for a constricted terminal airway is computed and shown to be sigmoidal. Constricted terminal airways are predicted to have two stable states: one effectively open and one nearly closed. We argue that the heterogeneity of whole lung constriction is a consequence of this behavior. Airways are partitioned between the two states to accommodate total flow, and changes in tidal volume and end-expiratory pressure affect the number of airways in each state. Quantitative predictions for whole lung resistance and elastance agree with data from previously published studies on lung impedance.  相似文献   

7.
When airway smooth muscle is contracted in vitro, the airway lumen continues to narrow with increasing concentrations of agonist until complete airway closure occurs. Although there remains some controversy regarding whether airways can close in vivo, recent work has clearly demonstrated that, if the airway is sufficiently stimulated with contractile agonists, complete closure of even large cartilaginous conducting airways can readily occur with the lung at functional residual capacity (Brown RH and Mitzner W. J Appl Physiol 85: 2012-2017, 1998). This result suggests that the tethering of airways in situ by parenchymal attachments is small at functional residual capacity. However, at lung volumes above functional residual capacity, the outward tethering of airways should increase, because both the parenchymal shear modulus and tethering forces increase in proportion to the transpulmonary pressure. In the present study, we tested whether we could prevent airway closure in vivo by increasing lung volume with positive end-expiratory pressure (PEEP). Airway smooth muscle was stimulated with increasing methacholine doses delivered directly to airway smooth muscle at three levels of PEEP (0, 6, and 10 cmH(2)O). Our results show that increased lung volume shifted the airway methacholine dose-response curve to the right, but, in many airways in most animals, airway closure still occurred even at the highest levels of PEEP.  相似文献   

8.
9.
We have measured the change of lung mechanical parameters on isolated rabbit lungs exposed to chlorine gas (Cl{in2}). Experimental results show parallel increase in elastance and resistance of impaired lungs. We tried to determine whether this may be explained by a reduction of the ventilated areas in the lung, consecutive to closure of some airways. We have then tried to simulate these experimental results by studying the effects of various airways occlusions imposed on two concurrent models (symmetrical and dissymmetrical) of the tracheo-bronchial tree. For each model, we successively evaluated the resistance of the normal lung, simulated a partial peripheral airways occlusion and estimated the induced changes in total resistance. Analytical expressions of the "occluded lung" elastance and resistance have been found for the symmetrical model but not for the dissymmetrical model (a graphical approach is proposed). With the symmetrical model, simulated results are comparable to experimental ones when the occlusion level is proximal. Whatever the dissymmetry level (δ) of the fractal tree model, we could not simulate the expected increase in resistance with the observed increase in elastance. We conclude that either the occlusion is non homogeneous or the lung impairment is not only a reduction in ventilated areas. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Previous studies have demonstrated sites of flow limitation in the central airways of dogs and humans. At low lung volumes, however, during a forced expiration, it is not clear whether flow-limiting segments (FLS) move into the lung periphery. Using intrabronchial lateral pressure catheters, we located FLS in human subjects at all lung volumes between functional residual capacity (FRC) and residual volume (RV). Three individuals with severe intracranial hemorrhage maintained on ventilators were studied. Partial maximal flow-volume curves were generated from 1 liter above FRC to RV by lowering downstream pressure and using the interrupter technique. Sites of FLS were defined as the most downstream points where lateral pressure did not change with driving pressure. FLS were found in all subjects in the central airways. In one subject, FLS moved from segmental bronchi to the first subsegmental bronchus as RV was approached but not beyond. In the other two subjects, FLS remained fixed in location at all measured lung volumes. At constant volume, multiple FLS were located, all in parallel, e.g., fixed in left upper, left lower, and right middle lobar bronchi. In conclusion, sites of flow limitation remain in the central airways as lung volume approaches RV. FLS may move peripherally within the central airways but not beyond proximal subsegmental bronchi.  相似文献   

11.
Loss of lung units due to pneumonectomy stimulates growth of the remaining lung. It is generally believed that regenerative lung growth involves only alveoli but not airways, a dissociated response termed "dysanaptic growth." We examined the structural response of respiratory bronchioles in immature dogs raised to maturity after right pneumonectomy. In another group of adult dogs, we also examined the effect of preventing mediastinal shift after right pneumonectomy on the response of respiratory bronchioles. In immature dogs after pneumonectomy, the volume of the remaining lung increased twofold, with no change in volume density, numerical density, or mean diameter of respiratory bronchiole, compared with that in the control lung. The number of respiratory bronchiole segments and branch points increased proportionally with lung volume. In adult dogs after pneumonectomy, prevention of mediastinal shift reduced lung strain at a given airway pressure, but lung expansion and regenerative growth of respiratory bronchiole were not eliminated. We conclude that postpneumonectomy lung growth is associated with proliferation of intra-acinar airways. The proportional growth of acinar airways and alveoli should optimize gas exchange of the regenerated lung by enhancing gas conductance and mixing efficiency within the acinus.  相似文献   

12.
Lung development is both a pre- and postnatal process. Although many lung diseases have their origins in early childhood, few quantitative data are available on the normal growth and differentiation of both the conducting airways and the airway epithelium during the postnatal period. We examined rhesus monkey lungs from five postnatal ages: 4-6 days and 1, 2, 3, and 6 mo. Airways increase significantly in both length and circumference as monkeys increase significantly in body weight from 5 days to 6 mo. In this study we asked: as basement membrane surface area increases, does the epithelial cell organization change? To answer this question, we quantified total epithelial cell mass using high-resolution light micrographs and morphometric techniques on sections from defined airway regions: trachea, proximal intrapulmonary bronchus (generations 1 or 2), and distal intrapulmonary bronchus (generations 6-8). Epithelial thickness decreased in the smaller, more distal, airways compared with trachea but did not change with age in the trachea and proximal bronchus. The volume fraction of all cell types measured did not change significantly. Ciliated cells in the distal bronchus and goblet cells in the trachea both decreased in abundance with increasing age. Overall, the epithelial cell populations changed little in terms of mass or relative abundance to each other during this period of active postnatal lung growth. Regarding the proximal conducting airway epithelium, we conclude that 1) the steady-state abundance is tightly regulated to keep the proportion of cell types constant, and 2) establishment of these cell types occurs before 4-6 days postnatal age. We conclude that growth of the proximal airways occurs primarily in length and lags behind that of the lung parenchyma.  相似文献   

13.
The interrupter method for measuring respiratory system resistance involves rapidly interrupting flow at the mouth while measuring the pressure just distal to the point of interruption. The pressure signal observed invariably exhibits two distinct phases. The first phase is a very rapid jump, designated delta Pinit, which occurs immediately on interruption of flow. The second phase is designated delta Pdif and is a further pressure change in the same direction as delta Pinit but evolving over several seconds. The physiological interpretations of delta Pinit and delta Pdif have been somewhat unclear. Delta Pinit has been taken to equal the pressure drop across the pulmonary airways, possibly with a contribution from the tissues of the respiratory system. Delta Pdif can arise, in principle, from two sources: gas redistribution throughout the lung after interruption of flow and stress recovery within the tissues. To resolve these issues we performed interruption experiments on anesthetized paralyzed, tracheotomized, open-chest normal dogs during passive expiration while measuring alveolar pressures at three sites with alveolar capsules. We found that, in the absence of the chest wall, delta Pinit reflects only the resistance of the airways and that delta Pdif can be ascribed almost entirely to the stress recovery properties of lung tissues.  相似文献   

14.
Understanding the human development of pulmonary air spaces is important for calculating the dose from exposure to inhaled materials as a function of age. We have measured, in vivo, the air space caliber of the small airways and alveoli at their natural full distension [total lung capacity (TLC)] by aerosol-derived airway morphometry in 53 children of age 6-22 yr and 59 adults of age 23-80 yr. Aerosol-derived airway morphometry utilizes the gravitational settling time of inhaled inert particles to infer the vertical distance necessary to produce the observed loss of particles to the airway surfaces at sequential depths into the lung. Previously, we identified anatomical features of the lung: the caliber of the transitional bronchioles [transitional effective air space dimension (EADtrans)]; the mean linear dimension of the alveoli (EADmin); and a measure of conducting airway volume [volumetric lung depth (VLDtrans)]. In the present study, we found that EADmin increased with age, from 184 microm at age 6 to 231 microm at age 22, generally accounting for the increase in TLC observed over this age range. EADtrans did not increase with TLC, averaging 572 microm, but increased with subject age and height when the entire age range of 6-80 yr is included {EADtrans (microm)=0.012[height (cm)]x[age (yr)]+508; P=0.007}. VLDtrans scaled linearly with lung volume, but VLDtrans relative to TLC did not change with age, averaging 7.04+/-1.55% of TLC. The data indicate that from childhood (age of 6 yr) to adulthood a constant number of respiratory units is maintained while both the smallest bronchioles and alveoli expand in size to produce the increased lung volume with increased age and height.  相似文献   

15.
The analysis of high-resolution computed tomography (CT) images of the lung is dependent on inter-subject differences in airway geometry. The application of computational models in understanding the significance of these differences has previously been shown to be a useful tool in biomedical research. Studies using image-based geometries alone are limited to the analysis of the central airways, down to generation 6–10, as other airways are not visible on high-resolution CT. However, airways distal to this, often termed the small airways, are known to play a crucial role in common airway diseases such as asthma and chronic obstructive pulmonary disease (COPD). Other studies have incorporated an algorithmic approach to extrapolate CT segmented airways in order to obtain a complete conducting airway tree down to the level of the acinus. These models have typically been used for mechanistic studies, but also have the potential to be used in a patient-specific setting. In the current study, an image analysis and modelling pipeline was developed and applied to a number of healthy (n = 11) and asthmatic (n = 24) CT patient scans to produce complete patient-based airway models to the acinar level (mean terminal generation 15.8 ± 0.47). The resulting models are analysed in terms of morphometric properties and seen to be consistent with previous work. A number of global clinical lung function measures are compared to resistance predictions in the models to assess their suitability for use in a patient-specific setting. We show a significant difference (p < 0.01) in airways resistance at all tested flow rates in complete airway trees built using CT data from severe asthmatics (GINA 3–5) versus healthy subjects. Further, model predictions of airways resistance at all flow rates are shown to correlate with patient forced expiratory volume in one second (FEV1) (Spearman ρ = −0.65, p < 0.001) and, at low flow rates (0.00017 L/s), FEV1 over forced vital capacity (FEV1/FVC) (ρ = −0.58, p < 0.001). We conclude that the pipeline and anatomical models can be used directly in mechanistic modelling studies and can form the basis for future patient-based modelling studies.  相似文献   

16.
One of the mechanisms by which adult disease can arise from a fetal origin is by in utero disruption of organogenesis. These studies were designed to examine respiratory function changes in aging rats following transient disruption of lung growth at 16 days gestation. Fetuses were treated in utero with a replication deficient adenovirus containing the cystic fibrosis conductance transmembrane regulator (CFTR) gene fragment cloned in the anti-sense direction. The in utero-treated rats demonstrated abnormal lung function beginning as early as 30 days of age and the pathology progressed as the animals aged. The pulmonary function abnormalities included decreased static compliance as well as increased conducting airway resistance, tissue damping, and elastance. Pressure volume (PV) curves demonstrated a slower early rise to volume and air trapping at end-expiration. The alterations of pulmonary function correlated with lung structural changes determined by morphometric analysis. These studies demonstrate how transient disruption of lung organogensis by single gene interference can result in progressive change in lung function and structure. They illustrate how an adult onset disease can arise from subtle changes in gene expression during fetal development.  相似文献   

17.
The lung proteome is a dynamic collection of specialized proteins related to pulmonary function. Many cells of different derivations, activation states, and levels of maturity contribute to the changing environment, which produces the lung proteome. Inflammatory cells reacting to environmental challenge, for example from allergens, produce and secrete proteins which have profound effects on both resident and nonresident cells located in airways, alveoli, and the vascular tree which provides blood cells to the parenchyma alveolar bed for gas exchange. In an experimental model of allergic airway inflammation, we have compared control and allergen challenged lung compartments to determine global protein expression patterns using 2D-gel electrophoresis and subsequent spot identification by MS/MS mass spectrometry. We have then specifically isolated the epithelial mucosal layer, which lines conducting airways, from control and allergen challenged lungs, using laser capture technology and performed proteome identification on these selected cell samples. A central component of our investigations has been to contextually relate the histological features of the dynamic pulmonary environment to the changes in protein expression observed following challenge. Our results provide new information of the complexity of the submucosa/epithelium interface and the mechanisms behind the transformation of airway epithelium from normal steady states to functionally activated states.  相似文献   

18.
The respiratory system acts as a portal into the human body for airborne materials, which may gain access via the administration of medicines or inadvertently during inhalation of ambient air (e.g. air pollution). The burden of lung disease has been continuously increasing, to the point where it now represents a major cause of human morbidity and mortality worldwide. In the UK, more people die from respiratory disease than from coronary heart disease or non-respiratory cancer. For this reason alone, gaining an understanding of mechanisms of human lung biology, especially in injury and repair events, is now a principal focus within the field of respiratory medicine. Animal models are routinely used to investigate such events in the lung, but they do not truly reproduce the responses that occur in humans. Scientists committed to the more robust Three Rs principles of animal experimentation (Reduction, Refinement and Replacement) have been developing viable alternatives, derived from human medical waste tissues from patient donors, to generate in vitro models that resemble the in vivo human lung environment. In the specific case of inhalation toxicology, human-oriented models are especially warranted, given the new REACH regulations for the handling of chemicals, the rising air pollution problems and the availability of pharmaceutically valuable drugs. Advances in tissue-engineering have made it feasible and cost-effective to construct human tissue equivalents of the respiratory epithelia. The conducting airways of the lower respiratory system are a critical zone to recapitulate for use in inhalation toxicology. Three-dimensional (3-D) tissue designs which make use of primary cells, provide more in vivo-like responses, based on the targeted interactions of multiple cell types supported on artificial scaffolds. These scaffolds emulate the native extracellular matrix, in which cells differentiate into a functional pulmonary tissue. When 3-D cell cultures are employed for testing aerosolised chemicals, drugs and xenobiotics, responses are captured that mirror the events in the in situ human lung and provide human endpoint data.  相似文献   

19.
The alveolar surface network (ASN) is the totally fluid intraacinar conformation of the alveolar surface liquid (ASL) continuum circulating, both in series and in parallel, through ultrathin (to <7 nm) molecular conduits formed by appositions of unit bubbles of alveolar gas. The ASN is the analogue of foam in vitro. Appositions of unit bubble films, namely foam films, include (a) bubble-to-bubble at the alveolar entrance, across alveolar ducts, and at pores of Kohn ('classical foam films'); (b) bubble-to-epithelial cell surface ('cell-surface foam film'); and (c) bubble-to-open surface liquid layer of the terminal conducting airways ('surface foam film'). These appositions of monolayer bubble films create (a) 'macrochannels' ('pressure points', 'reservoirs') that modulate ASL transfers, volume and flow throughout the acinus and between acinar surface and both the interstitium and the terminal conducting airways surfaces, and (b) 'microchannels' along the broadest surfaces of the appositions. 'Microchannels', which are expectedly bilayer, serve several functions, including (a) virtually frictionless orientation of unit bubbles and ASL to fill the acinar air space; (b) virtually unrestricted diffusion of respiratory gases; (c) architectural support ('infrastructure') against the 'mass' and 'recoil' force of the interstitium; and (d) provision of 'gate' and 'bridge' dynamics that further modulate and direct ASL circulation. The physiological and anatomical boundary between acinar ASN and the bubble-free open liquid surfaces of the conducting airways is marked by the surface foam film. The ASN operates as outlined above in all regions of the lung, at all lung volumes, beginning at the onset of air-breathing at birth and continuing throughout life. Reports of its discovery (Pulmonary Physiology of the Fetus, Newborn and Child (1975) 116; Pediatr. Res. 12 (1978) 1070) and subsequent confirmatory research including the adult lung are summarized in this review by progressive development of each function. These functions, which are normal for a relatively dry foam such as the ASN (where gas:liquid volume ratio is >99:1) cannot be duplicated by the conventional theories and models of an open 'alveolar lining layer'. The unfortunate research technologies upon which these theories and models have been formulated have, indeed, obfuscated recognition of the ASN in vivo. They are also presented and critiqued in this review.  相似文献   

20.
We recently proposed an eight-parameter model of the respiratory system to account for its mechanical behavior when flow is interrupted during passive expiration. The model consists of two four-parameter submodels representing the lungs and the chest wall, respectively. The lung submodel consists of an airways resistance together with elements embodying the viscoelastic properties of the lung tissues. The chest wall submodel has similar structure. We estimated the parameters of the model from data obtained in four normal, anesthetized, paralyzed, tracheostomized mongrel dogs. This model explains why lung tissue and chest wall resistances should be markedly frequency dependent at low frequencies and also permits a physiological interpretation of resistance measurements provided by the flow interruption method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号