首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Receptor heteromerization is an important phenomenon that results from the interaction of epitopes on two receptors. Previous studies have suggested the possibility of Dopamine D2-NMDA receptors' interaction. We believe that the interaction is through an acidic epitope of the NMDA NR1 subunit (KVNSEEEEEDA) and a basic epitope of the D2 third intracellular loop (VLRRRRKRVN), which was shown to also interact with the Adenosine A2A receptor. In previous work, we highlighted the role of certain amino acid residues, mainly two or more adjacent arginine on one peptide and two or more adjacent glutamate, or aspartate, or a phosphorylated residue on the other in the formation of noncovalent complexes (NCX) between epitopes. In the present work, we use the phosphorylated (KVNSpEEEEEDA), nonphosphorylated (KVNSEEEEEDA) and modified (KVNpSAAAAAAA) forms of the NMDA epitope that possibly interact with the D2 epitope to investigate the gas-phase stability of the NCXs as a function of the nominal energy given to the NCX ion as it enters the collision cell. In addition to theoretical calculations, the experimental data was used to calculate the stability of each electrostatic complex versus that of the dimer of KVNSpEEEEEDA. Our results demonstrate the importance of the phosphate group in stabilizing molecular interactions and that appreciably higher collision energies are required to completely dissociate any of the three different NCX ions that are formed through electrostatic interaction in comparison to the energy required to dissociate the KVNpSEEEEEDA dimer ion, which is mainly kept together by hydrogen bonding. This study emphasizes ionic bonds stability and their importance to protein structure as their potent electrostatic attractions can in the gas-phase surpass the strength of covalent bonds.  相似文献   

2.
Electrostatic interactions between a basic epitope containing adjacent arginine residues and an acidic epitope containing a phosphorylated serine are involved in receptor heteromerization. In the present study, we demonstrate that this arginine-phosphate electrostatic interaction possesses a "covalent-like" stability. Hence, these bonds can withstand fragmentation by mass spectrometric collision-induced dissociation at energies similar to those that fragment covalent bonds and they demonstrate an extremely low dissociation constant by plasmon resonance. The present work also highlights the importance of phosphorylation-dephosphorylation events in the modulation of this electrostatic attraction. Phosphorylation of the acidic epitope, a casein kinase one consensus site, makes it available to interact with the basic epitope. On the other hand, phosphorylation of serine and/or threonine residues adjacent to the basic epitope, a protein kinase A consensus site, slows down the attraction between the epitopes. Although analyzed here in the frame of receptor heteromerization, the arginine-phosphate electrostatic interaction most likely represents a general mechanism in protein-protein interactions.  相似文献   

3.
The 70-kDa microbial heat shock protein (mHSP70) has a profound effect on the immune system, interacting with the CD40 receptor on DC and monocytes to produce cytokines and chemokines. The mHSP70 also induces maturation of dendritic cells (DC) and thus acts as an alternative ligand to CD40L on T cells. In this investigation, we have identified a cytokine-stimulating epitope (peptide 407-426), by activating DC with overlapping synthetic peptides (20-mers) derived from the sequence of mHSP70. This peptide also significantly enhances maturation of DC stimulated by mHSP70 or CD40L. The epitope is located at the base of the peptide-binding groove of HSP70 and has five critical residues. Furthermore, an inhibitory epitope (p457-496) was identified downstream from the peptide-binding groove that inhibits cytokine production and maturation of DC stimulated by HSP70 or CD40L. The p38 MAP kinase phosphorylation is critical in the alternative CD40-HSP70 pathway and is inhibited by p457-496 but enhanced by p407-426.  相似文献   

4.
We applied the improved sensitivity and soft ionization characteristics of electrospray Ionization (ESI)-MS/MS and matrix-assisted laser desorption/ionization(MALDI)-time of flight (TOF) mass spectrometry (MS) to analysis of the GPI-anchored C-terminal peptide derived from 5'-nucleotidase. ESI-MS/MS analysis was applied to the core structure (MW, 2,743). In the collision-induced dissociation (CID) spectrum, single-charged ions such as m/z 162 (glucosamine), 286 (mannose-phosphate-ethanolamine), and 447 ([mannose-phosphate-ethanolamine]-glucosamine) were clearly detected as characteristic fragment ions of the GPI-anchored peptide. On MALDI-TOF-MS analysis, heterogeneous peaks of GPI-anchored peptides were detected as single-charged ions in the positive mode. Product ions were obtained by post-source decay (PSD) of m/z 2,905 using curved field reflectron of TOF-MS. Most of the expected product ions derived from the GPI-anchored peptide, containing the core structure and an additional mannose side chain, were successively obtained. Thus, ESI-MS/MS and MALDI-TOF-PSD-MS proved to be effective and sensitive methods for analyzing the GPI-anchored peptide structure with less than 10 pmol of sample. These characteristic fragments or fragmentation patterns seem to be very useful for identification of GPI-anchored C-terminal peptides derived from any kind of GPI-anchored protein.  相似文献   

5.
This tutorial article introduces mass spectrometry (MS) for peptide fragmentation and protein identification. The current approaches being used for protein identification include top-down and bottom-up sequencing. Top-down sequencing, a relatively new approach that involves fragmenting intact proteins directly, is briefly introduced. Bottom-up sequencing, a traditional approach that fragments peptides in the gas phase after protein digestion, is discussed in more detail. The most widely used ion activation and dissociation process, gas-phase collision-activated dissociation (CAD), is discussed from a practical point of view. Infrared multiphoton dissociation (IRMPD) and electron capture dissociation (ECD) are introduced as two alternative dissociation methods. For spectral interpretation, the common fragment ion types in peptide fragmentation and their structures are introduced; the influence of instrumental methods on the fragmentation pathways and final spectra are discussed. A discussion is also provided on the complications in sample preparation for MS analysis. The final section of this article provides a brief review of recent research efforts on different algorithmic approaches being developed to improve protein identification searches.  相似文献   

6.
Signal transduction from the insulin receptor to downstream effectors is attenuated by phosphorylation at a number of Ser/Thr residues of insulin receptor substrate-1 (IRS-1) resulting in resistance to insulin action, the hallmark of type II diabetes. Ser/Thr residues can also be reversibly glycosylated by O-linked beta-N-acetylglucosamine (O-GlcNAc) monosaccharide, a dynamic posttranslational modification that offers an alternative means of protein regulation to phosphorylation. To identify sites of O-GlcNAc modification in IRS-1, recombinant rat IRS-1 isolated from HEK293 cells was analyzed by two complementary mass spectrometric methods. Using data-dependent neutral loss MS3 mass spectrometry, MS/MS data were scanned for peptides that exhibited a neutral loss corresponding to the mass of N-acetylglucosamine upon dissociation in an ion trap. This methodology provided sequence coverage of 84% of the protein, permitted identification of a novel site of phosphorylation at Thr-1045, and facilitated the detection of an O-GlcNAc-modified peptide of IRS-1 at residues 1027-1073. The level of O-GlcNAc modification of this peptide increased when cells were grown under conditions of high glucose with or without chronic insulin stimulation or in the presence of an inhibitor of the O-GlcNAcase enzyme. To map the exact site of O-GlcNAc modification, IRS-1 peptides were chemically derivatized with dithiothreitol following beta-elimination and Michael addition prior to LC-MS/MS. This approach revealed Ser-1036 as the site of O-GlcNAc modification. Site-directed mutagenesis and Western blotting with an anti-O-GlcNAc antibody suggested that Ser-1036 is the major site of O-GlcNAc modification of IRS-1. Identification of this site will facilitate exploring the biological significance of the O-GlcNAc modification.  相似文献   

7.
Huang Z  Wong CF 《Proteins》2012,80(9):2275-2286
Extending a previous mining-minima approach to identifying the docking pathways between the hexapeptide GDYMNM and the catalytic domain of the insulin receptor tyrosine kinase (IRK), we found two major docking pathways connecting the binding pocket and the surface of the protein. One pathway was more likely to lead to phosphate transfer from ATP to the peptide as the distance between the γ-phosphate of ATP and the hydroxyl oxygen of the target tyrosine approached one that could facilitate reaction. The movement of the peptide along the pathways was found to couple with residues in the activation loop of the protein. Although these residues might not affect binding affinity, they might influence the kinetics of peptide entrance and release.  相似文献   

8.
The fine modulation of peptide–antibody interactions was investigated with anti-peptide monoclonal antibodies recognizing peptide 125–136 of the coat protein of tobacco mosaic virus. Nine synthetic peptides presenting single amino acid substitutions were selected for detailed analysis on the basis of their reactivity in ELISA. Kinetic measurements of the binding of four antibodies to these peptides performed with a biosensor instrument (BIAcoreTM, Pharmacia) were used to quantify the contribution of individual residues to antibody binding. The results showed that even conservative exchanges of some residues in the epitope results in a small but significant decrease of the equilibrium affinity constant due mostly to a higher dissociation rate constant of the monoclonal antibodies. Two amino acid residues directly adjacent to the epitope, which appeared to play no role when tested by ELISA, were shown to influence the kinetics of binding. These data should be useful for computer modelling of the peptide–antibody interactions.  相似文献   

9.
The mass spectrometric analysis of the immunodominant epitope region (273-284) of herpes simplex virus type 1 (HSV-1) glycoprotein D (gD) showed a favoured fission at the Asp-Pro peptide bond. The fast atom bombardment collision induced dissociation (FAB-CID) study of closely related X-Pro peptides documented that neither the length nor the amino acid composition of the peptide has a significant influence on this preferential cleavage. At the same time the DP bond proved to be sensitive to acidic conditions in the course of peptide synthesis. These observations prompted us to compare the chemical and mass spectrometric stability of a new set of nonapeptides related to the 273-284 epitope region of gD, i.e. SALLEDPVG and SALLEXPVG peptides, where X = A, K, I, S, F, E or D, respectively. The chemical stability of these peptides during acidic hydrolysis was investigated by electrospray ionization mass spectrometry (ESI-MS) and the products were identified by ESI-MS and on-line high performance liquid chromatography-mass spectrometry (HPLC-MS). The mass spectrometric fragmentation and bond stability of the untreated peptide samples were also studied using ESI-MS and liquid secondary ion mass spectrometry (LSIMS). Both the chemical hydrolysis and the mass spectrometric fragmentation showed that the Asp-Pro bond could easily be cleaved, while the KP bond proved to be stable under both circumstances. On the other hand, the XP bond (X = A, I, S, F or E) fragmented easily under the mass spectrometric conditions, but was not sensitive to the acidolysis.  相似文献   

10.
Tyrosine sulfation is a post-translational modification entailing covalent attachment of sulfate to tyrosine residues. It takes place in the trans-Golgi, is necessary for the bioactivity of some proteins, and improves their ability to interact with other proteins. In the present work, we show that a protein containing a sulfated tyrosine with a delocalized negative charge forms a salt bridge with another protein if it has two or more adjacent arginine residues containing positive delocalized charges. These noncovalent complexes are so stable that, when submitted to collision induced dissociation, the peptides forming the complex dissociate. Just one covalent bond fragments, the covalent bond between the tyrosine oxygen and the SO3 sulfur, and is represented by the appearance of a new peak (basic peptide + SO3), suggesting that in some instances covalent bonds will break down before the noncovalent bonds between the arginine guanidinium and SO3 dissociate. The data implies that the dissociation pathway is preferred; however, fragmentation between tyrosine and the sulfate residue is a major pathway.  相似文献   

11.
The high-throughput nature of proteomics mass spectrometry is enabled by a productive combination of data acquisition protocols and the computational tools used to interpret the resulting spectra. One of the key components in mainstream protocols is the generation of tandem mass (MS/MS) spectra by peptide fragmentation using collision induced dissociation, the approach currently used in the large majority of proteomics experiments to routinely identify hundreds to thousands of proteins from single mass spectrometry runs. Complementary to these, alternative peptide fragmentation methods such as electron capture/transfer dissociation and higher-energy collision dissociation have consistently achieved significant improvements in the identification of certain classes of peptides, proteins, and post-translational modifications. Recognizing these advantages, mass spectrometry instruments now conveniently support fine-tuned methods that automatically alternate between peptide fragmentation modes for either different types of peptides or for acquisition of multiple MS/MS spectra from each peptide. But although these developments have the potential to substantially improve peptide identification, their routine application requires corresponding adjustments to the software tools and procedures used for automated downstream processing. This review discusses the computational implications of alternative and alternate modes of MS/MS peptide fragmentation and addresses some practical aspects of using such protocols for identification of peptides and post-translational modifications.  相似文献   

12.
J Anglister  B Zilber 《Biochemistry》1990,29(4):921-928
The interactions between the aromatic residues of the monoclonal antibody TE34, and its peptide antigen CTP3, have been studied by 2D TRNOE difference spectroscopy. The sequence of CTP3 corresponds to residues 50-64 of the B subunit of cholera toxin (VEVPGSQHIDSQKKA). Unlike two previously studied anti-CTP3 antibodies (TE32 and TE33), the TE34 antibody does not bind the toxin. The off-rate of CTP3 from TE34 was found to be too slow to measure strong TRNOE cross-peaks between the antibody and the peptide. Much faster off-rates, resulting in a strong TRNOE, were obtained for two peptide analogues: (a) CTP3 with an amide in the C-terminus (VEVPGSQHIDSQKKA-NH2) and (b) a truncated version of the peptide (N-acetyl-IDSQKKA). These modifications do not interfere significantly either with the interactions of the unmodified part of the peptide with the antibody or with intramolecular interactions occurring in the epitope recognized by the antibody. The combined use of these peptides allows us to study the interactions between the antibody and the whole peptide. Two tyrosine residues and one or more tryptophan and phenylalanine residues have been found to interact with histidine-8, isoleucine-9, aspartate-10, lysine-13 and/or lysine-14, and alanine-15 of the peptide. In the bound peptide, we observe interactions of a lysine residue with aspartate-10 beta protons. While the peptide epitope recognized by TE34 is between histidine-8 and the negatively charged C-terminus, that recognized by TE32 and TE33 is between residues 3 and 10 of the peptide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Differences in the affinity of a monoclonal antibody raised against the protein of tobacco mosaic virus for 15 related peptides (residues 134-146) carrying single-residue modifications were investigated using a novel biosensor technology (Pharmacia BIAcore). Analysis of the peptide-antibody interaction in real time allowed fast and reproducible measurements of both association and dissociation rate constants. Out of 15 mutant peptides analyzed, five were not recognized by the antibody at all, and seven were recognized as well as the wild-type peptide. For three of the peptides, the rate constants were different for the mutant and wild-type peptides. The pattern of residue recognition suggests that the epitope is formed by three residues (140, 143, and 144) in a helical conformation that mimics the structure in the protein. Even a minor modification of these residues totally abolishes recognition by the antibody. Modifications of adjacent residues result in small but significant differences in association and/or dissociation rate constants. One of the recognized residues is totally buried in the three-dimensional structure of TMV protein, suggesting that a structural rearrangement next to the helix occurs during protein-antibody interaction.  相似文献   

14.
Ren X  Nicoll DA  Galang G  Philipson KD 《Biochemistry》2008,47(22):6081-6087
The cardiac Na (+)-Ca (2+) exchanger (NCX1) is modeled to contain nine transmembrane segments (TMS) with a pair of oppositely oriented, conserved sequences called the alpha-repeats that are important in ion transport. Residue 122 in the alpha-1 repeat is in proximity to residue 768 in TMS 6, and the two residues can be cross-linked . During studies on the substrate specificity of this intramolecular cross-link, we found evidence that NCX1 can form dimers. At 37 degrees C in the absence of extracellular Na (+), copper phenanthroline catalyzes disulfide bond formation between cysteines at position 122 in adjacent NCX1 proteins. Dimerization was confirmed by histidine tag pull-down experiments that demonstrate the association of untagged NCX1 with histidine-tagged NCX1. Dimerization occurs along a face of the protein that includes parts of the alpha-1 and alpha-2 repeats as well as parts of TMS 1 and TMS 2. We do not see cross-linking between residues in TMS 5, TMS 6, or TMS 7. These data provide the first evidence for dimer formation by the Na (+)-Ca (2+) exchanger.  相似文献   

15.
The cardiac Na+-Ca2+ exchanger (NCX1) is a membrane protein that extrudes Ca2+ from cells using the energy of the Na+ gradient and is a key protein in regulating intracellular Ca2+ and contractility. Based on the current topological model, NCX1 consists of nine transmembrane segments (TMSs). The N-terminal five TMSs are separated from the C-terminal four TMSs by a large intracellular loop. Cysteine 768 is modeled to be in TMS 6 close to the intracellular surface. In this study, the proximity of TMS 6 to TMSs 1 and 2 was examined. Insect High Five cells were transfected with cDNAs encoding mutant NCX1 proteins. Each mutant contained cysteine 768 and an introduced cysteine in TMS 1 or 2. Cross-linking between cysteines was determined after reaction with thiol-specific cross-linkers containing spacer arms of 6.5-12 A. The data indicate that residues in TMSs 1 and 2 are close to cysteine 768 in TMS 6. Cysteine 768 cross-linked with residues at both ends of TMSs 1 and 2 and is likely located toward the middle of TMS 6. Based on these results, we present an expanded helix-packing model for NCX1.  相似文献   

16.
Insulin can alter myocardial contractility, in part through an effect on the cardiac sarcolemmal Na(+)/Ca(2+) exchanger (NCX), but little is known about its mechanism of action. The large cytoplasmic domain (f-loop) of NCX is required for regulation by various intracellular factors, and we have shown previously that residues 562-679 are determinants of NCX inhibition by exchanger inhibitory peptide (XIP). Here we show that the same f-loop deletion eliminates the enhancement of NCX current by insulin, and we examine the signal pathways involved in the insulin response. NCX current (I(NCX)) was measured in freshly isolated or cultured (up to 48 h) adult guinea pig myocytes and in myocytes expressing canine NCX1.1 with the 562-679 f-loop deletion (NCX-(Delta562-679)) via adenoviral gene transfer. I(NCX) was recorded by whole-cell patch clamp as the Ni(2+)-sensitive current at 37 degrees C with intracellular Ca(2+) buffered. Insulin (1 microm) increased I(NCX) (at +80 mV) by 110 and 83% in fresh and cultured myocytes, respectively, whereas in myocytes expressing NCX-(Delta562-679) the response was eliminated (with 100 microm XIP included to suppress any native guinea pig I(NCX)). The insulin effect on I(NCX) was not inhibited by wortmannin, a nitric-oxide synthase inhibitor, or disruption of caveolae but was blocked by chelerythrine, implicating protein kinase C, but not phosphatidylinositol-3-kinase, in the mechanism. The insulin effect was also not additive with phosphatidylinositol-4,5-bisphosphate-induced activation of I(NCX). The finding that the 562-670 f-loop domain is implicated in both XIP and receptor-mediated modulation of NCX highlights its important role in acute physiological or pathophysiological regulation of Ca(2+) balance in the heart.  相似文献   

17.
Knaus P  Sebald W 《Biological chemistry》2001,382(8):1189-1195
Bone morphogenetic proteins (BMP) are dimeric factors initiating several distinct signaling cascades by binding to two types of transmembrane serine/threonine kinase receptors (BRI and BRII), and are thus regulating several steps in embryonal development and adult tissue homeostasis. BMP-2 contains two symmetrical pairs of juxtaposed epitopes: the wrist epitope with high affinity to BRI consists of residues from both BMP-2 monomers, while the knuckle epitope resembles the low affinity site for BRII and comprises residues from only one monomer. Here we generated heterodimeric BMP-2 muteins with one monomer mutant in either epitope I for BRI (eI-) or epitope II for BRII (eII-) and the second monomer wild type for receptor interactions (m-). These muteins (B2eI-/B2m- and B2eII-/B2m-) were analyzed by biosensor analysis as well as by measuring their biological activity and compared to their homodimeric forms (either wild type or mutant). Depletion of only one epitope II results in the loss of biological activity as measured byalkaline phosphatase (ALP) activity and Smad induced reportergene assays. However, depletion of only one epitope I shows a reduction of ALP activity to about 25%, while the activation of the Smad pathway remained normal. Homomeric muteins are non-functional for both Smad and ALP activation. This suggests that two functional epitopes II have to be present on one BMP-2 molecule for receptor activation. Futhermore, both pathways (Smad and ALP) are triggered differently by distinct BMP-receptor complexes. Heteromeric BMP-2 mutants therefore allow a distinguishable manipulation of either pathway and thus represent important tools for the generation of specific BMP-2 antagonists or agonists.  相似文献   

18.
T cell activation requires formation of a tri-molecular interaction between a major histocompatibility complex (MHC), peptide, and T cell receptor. In a common model system, the ovalbumin epitope 323–339 binds the murine class II MHC, I-Ad, in at least three distinct registers. The DO11.10 T cell recognizes the least stable of these, as determined by peptide-MHC dissociation rates. Using exogenous peptides and peptide insertions into a carrier protein in combination with IL-2 secretion assays, we show that the alternate registers do not competitively inhibit display of the active register four. In contrast, this weakly binding register is stabilized by the presence of n-terminal flanking residues active in MHC binding. The DO11.10 hybridoma is sensitive to the presence of specific wild-type residues extending to at least the P-3 peptide position. Transfer of the P-4 to P-2 flanking residues to a hen egg lysozyme epitope also presented by I-Ad increases the activity of that epitope substantially. These results illustrate the inherent complexity in delineating the interaction of multiple registers based on traditional thermodynamic measurements and demonstrate the potential of flanking residue modification for increasing the activity of weakly bound epitopes. The latter technique represents an alternative to substitution of anchor residues within a weakly bound register, which we show can significantly decrease the activity of the epitope to a responding T cell.  相似文献   

19.
To locate antigenic epitopes on the N8 neuraminidase (NA), we generated a panel of 97 monoclonal antibodies (MAbs), 66 of which inhibited NA activity (NI antibodies). Three groups of NI MAbs were identified from their different reactivities with escape mutants. Group 1 antibodies recognized the peptide loop containing residues 344 to 346, which appears to be an immunodominant region on the rim of the enzyme center of the N8 NA. Group 2 antibodies recognized a novel epitope containing residues 150, 199, 367, 399, and 400 (N2 numbering). From the location of these residues on the three-dimensional structure of the N8 NA, the epitope appears to be located at the interface of two adjacent monomers in the tetrameric NA, one contributing residues 150 and 199 and the other contributing residues 367 and 399 to 400. The available evidence indicates that the MAbs of this group react with the NA only after it is fully assembled. The third group of antibodies recognized the peptide loops containing residues 367 and 399 to 400. All of the amino acid substitutions in N8 escape mutants which affect the NI activity of antibodies were located in the peptide loops known to form epitopes in the N2 and N9 subtypes, indicating that antigenic regions in the NA head inducing NI antibodies appear to be similar among different subtypes of influenza A viruses. The MAbs used in this study will be valuable in studying the role of each N8 NA epitope in host immune defense systems and in the kinetics analysis of the biosynthesis of the enzyme.  相似文献   

20.
The cardiac Na+-Ca2+ exchanger (NCX) is an important regulator of intracellular ion homeostasis and cardiac function. Gaining insight into modulation of the NCX is therefore important in order to understand ion handling in the heart under physiological and pathological conditions. Typically, the functional contribution of the NCX is often regarded as "secondary" to the changes in luminal Na+ and Ca2+. Whilst it is well accepted that the NCX can be regulated by various factors, including the concentrations of transported ions, direct receptor-mediated modulation of the cardiac NCX is more controversial. Evidence from several different laboratories supports the notion that the cardiac NCX is a direct target of neurotransmitters and hormones and their downstream signalling pathways; however, the issue remains unresolved due to conflicting data showing a lack of direct modulation. The present review summarizes overall findings regarding the modulation of the cardiac NCX, in particular on molecular mechanisms of direct phosphorylation of NCX by beta-adrenergic/adenylate cyclase/protein kinase A and (for comparative purposes) on endothelin-1/protein kinase C signalling pathways. It also aims to consider whether it is currently possible to reconcile discrepancies between studies in the interpretation of the regulation of the cardiac NCX by agents stimulating the beta-adrenoceptor/PKA pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号