首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Human papillomavirus type 16 (HPV-16) and HPV-18 are often detected in cervical carcinomas, while HPV-6, although frequently present in benign genital lesions, is only rarely present in cancers of the cervix. Therefore, infections with HPV-16 and HPV-18 are considered high risk and infection with HPV-6 is considered low risk. We found, by using a heterologous promoter system, that expression of the E7 transforming protein differs between high- and low-risk HPVs. In high-risk HPV-16, E7 is expressed from constructs containing the complete upstream E6 open reading frame. In contrast, HPV-6 E7 was efficiently translated only when E6 was deleted. By using clones in which the coding regions of HPV-6, HPV-16, and HPV-18 E7s were preceded by identical leader sequences, we found that the ability of the E7 gene products to induce anchorage-independent growth in rodent fibroblasts correlated directly with the oncogenic association of the HPV types. By using an immortalization assay of normal human keratinocytes that requires complementation of E6 and E7, we found that both E6 and E7 of HPV-18 could complement the corresponding gene from HPV-16. However, neither E6 nor E7 from HPV-6 was able to substitute for the corresponding gene of HPV-16 or HPV-18. Our results suggest that multiple factors, including lower intrinsic biological activity of E6 and E7 and differences in the regulation of their expression, account for the low activity of HPV-6, in comparison with HPV-16 and HPV-18, in in vitro assays. These same factors may, in part, account for the apparent difference in oncogenic potential between these viruses.  相似文献   

3.
It is recognized now that many functional proteins or their long segments are devoid of stable secondary and/or tertiary structure and exist instead as very dynamic ensembles of conformations. They are known by different names including natively unfolded, intrinsically disordered, intrinsically unstructured, rheomorphic, pliable, and different combinations thereof. Many important functions and activities have been associated with these intrinsically disordered proteins (IDPs), including molecular recognition, signaling, and regulation. It is also believed that disorder of these proteins allows function to be readily modified through phosphorylation, acetylation, ubiquitination, hydroxylation, and proteolysis. Bioinformatics analysis revealed that IDPs comprise a large fraction of different proteomes. Furthermore, it is established that the intrinsic disorder is relatively abundant among cancer-related and other disease-related proteins and IDPs play a number of key roles in oncogenesis. There are more than 100 different types of human papillomaviruses (HPVs), which are the causative agents of benign papillomas/warts, and cofactors in the development of carcinomas of the genital tract, head and neck, and epidermis. With respect to their association with cancer, HPVs are grouped into two classes, known as low (e.g., HPV-6 and HPV-11) and high-risk (e.g., HPV-16 and HPV-18) types. The entire proteome of HPV includes six nonstructural proteins [E1, E2, E4, E5, E6, and E7 (the latter two are known to function as oncoproteins in the high-risk HPVs)] and two structural proteins (L1 and L2). To understand whether intrinsic disorder plays a role in the oncogenic potential of different HPV types, we have performed a detailed bioinformatics analysis of proteomes of high-risk and low-risk HPVs with the major focus on E6 and E7 oncoproteins. The results of this analysis are consistent with the conclusion that high-risk HPVs are characterized by the increased amount of intrinsic disorder in transforming proteins E6 and E7.  相似文献   

4.
The productive program of human papillomaviruses (HPVs) in epithelia is tightly linked to squamous differentiation. The E7 proteins of high-risk HPV genotypes efficiently inactivate the pRB family of proteins that control the cell cycle, triggering S phase in suprabasal keratinocytes. This ability has until now not been demonstrated for the low-risk HPV-6 or HPV-11 E7 proteins. An inducible system in which HPV-16 E7 is fused to the ligand binding domain of the human estrogen receptor (ER) was described by Smith-McCune et al. (K. Smith-McCune, D. Kalman, C. Robbins, S. Shivakumar, L. Yuschenkoff, and J. M. Bishop, Proc. Natl. Acad. Sci. USA 96:6999-7004, 1999). In the absence of hormone, E7ER is cytoplasmic, and upon addition of 17beta-estradiol, it translocates to the nucleus. Using organotypic epithelial raft cultures developed from primary human keratinocytes, we show that 16E7ER promotes either S-phase reentry or p21cip1 accumulation in differentiated keratinocytes in a stochastic manner as early as 6 h postinduction with 17beta-estradiol. A vector expressing the ER moiety alone had no effect. These observations prove unequivocally that the E7 protein drives S-phase reentry in postmitotic, differentiated keratinocytes rather than preventing S-phase exit while the cells ascend through the epithelium. HPV-11 E7ER and, much less efficiently, HPV-6 E7ER also promoted S-phase reentry by differentiated cells upon exposure to 17beta-estradiol. S-phase induction required the consensus pRB binding motif. We propose that the elevated nuclear levels of the low-risk HPV E7 protein afforded by the inducible system account for the positive results. These observations are entirely consistent with the fact that low-risk HPV genotypes replicate in the differentiated strata in patient specimens, as do the high-risk HPVs.  相似文献   

5.
The E7 proteins encoded by the human papillomaviruses (HPVs) associated with anogenital lesions share significant amino acid sequence homology. The E7 proteins of these different HPVs were assessed for their ability to form complexes with the retinoblastoma tumor suppressor gene product (p105-RB). Similar to the E7 protein of HPV-16, the E7 proteins of HPV-18, HBV-6b and HPV-11 were found to associate with p105-RB in vitro. The E7 proteins of HPV types associated with a high risk of malignant progression (HPV-16 and HPV-18) formed complexes with p105-RB with equal affinities. The E7 proteins encoded by HPV types 6b and 11, which are associated with clinical lesions with a lower risk for progression, bound to p105-RB with lower affinities. The E7 protein of the bovine papillomavirus type 1 (BPV-1), which does not share structural similarity in the amino terminal region with the HPV E7 proteins, was unable to form a detectable complex with p105-RB. The amino acid sequences of the HPV-16 E7 protein involved in complex formation with p105-RB in vitro have been mapped. Only a portion of the sequences that are conserved between the HPV E7 proteins and AdE1A were necessary for association with p105-RB. Furthermore, the HPV-16 E7-p105-RB complex was detected in an HPV-16-transformed human keratinocyte cell line.  相似文献   

6.
Many important functions have been attributed to the high-risk human papillomavirus (HPV) E6 and E7 proteins, including binding and degradation of p53 as well as interacting with Rb proteins. In contrast, the physiological roles of the low-risk E6 and E7 proteins remain unclear. Previous studies demonstrated that the high-risk E6 and E7 proteins also play roles in the productive life cycle by facilitating the maintenance of viral episomes (J. T. Thomas, W. G. Hubert, M. N. Ruesch, and L. A. Laimins, Proc. Natl. Acad. Sci. USA 96:8449-8454, 1999). In order to determine whether low-risk E6 or E7 is similarly necessary for the stable maintenance of episomes, HPV type 11 (HPV-11) genomes that contained translation termination mutations in E6 or E7 were constructed. Upon transfection into normal human keratinocytes, genomes in which E6 function was abolished were unable to be maintained episomally. Transfection of genomes containing substitution mutations in amino acids conserved in high- and low-risk HPV types suggested that multiple protein domains are involved in this process. Examination of cells transfected with HPV-11 genomes in which E7 function was inhibited were found to exhibit a more complex phenotype. At the second passage following transfection, mutant genomes were maintained as episomes but at significantly reduced levels than in cells transfected with the wild-type HPV-11 genome. Upon further passage in culture, however, the episomal forms of these E7 mutant genomes quickly disappeared. These findings identify important new functions for the low-risk E6 and E7 proteins in the episomal maintenance of low-risk HPV-11 genomes and suggest that they may act in a manner similar to that observed for the high-risk proteins.  相似文献   

7.
Several reports in the literature have indicated that the E6 not only elevates the level of c-Myc level but that the protein also associates with the Myc complex and activates Myc-responsive genes. There would seem to be a mechanism by which this oncogene can modulate cell proliferation and differentiation. Furthermore, an increase in c-Myc levels has also observed during ectopic expression of HPV E7 alone. Using the yeast two-hybrid system, we further found that the c-Myc interacts and forms a specific complex with HPV-16E7. In this study, we have demonstrated that E7 does indeed interact with c-Myc and a sequential deletion analysis of E7 maps the c-Myc interaction site to the carboxyl-terminal region. We determined two HPV-18 E7 binding sites on c-Myc involving the amino acids regions 1-100 and 367-439. The interaction of the high-risk type HPV E7 with c-Myc can augment c-Myc transactivation activity but this does not occur with low-risk type HPV E7. Deletion within the Cys-X-X-Cys repeat motif at the C-terminus of HPV-18 E7 leads to a lost of association with c-Myc and also abolishes the enhancement of c-Myc's transactivation activity. Furthermore, the interaction of HPV-18 E7 with c-Myc functionally promotes c-Myc's DNA-binding ability. Using the hTERT promoter as a model, enhanced c-Myc binding ability to the hTERT promoter as measured by immunoprecipitation assay was observed and occurred in an E7 dose-dependent manner. Taken together, these results provide significant new insights into the association of c-Myc with E7 and the possible involvement of high-risk E7 in oncogenesis.  相似文献   

8.
In this study we investigated the translational capacities of bicistronic and spliced mRNAs originating from the E6 and E7 regions of the high-risk genital human papillomavirus type 16 (HPV-16) and the low-risk HPV-11. For HPV-16 it was found, unexpectedly, that E7 protein could be translated from full-length bicistronic E6-E7 mRNAs. E6*I and E6*II splicing events were not required for E7 synthesis, nor did splicing increase the efficiency of E7 translation significantly. In cells, E7 synthesis from all known naturally occurring mRNA structures was very inefficient compared with that from synthetic monocistronic controls, suggesting that HPV-16 employs translational mechanisms to restrict E7 protein levels. For HPV-11, only RNAs initiated at the P264 promoter, located within the E6 open reading frame, were capable of providing an efficient template for E7 synthesis. P264-initiated mRNAs were as efficient in vivo as monocistronic controls, suggesting that the low-risk HPV-11 does not limit E7 synthesis by translational mechanisms. A detailed analysis of HPV-16 templates by using site-directed mutagenesis showed that the majority of ribosomes which ultimately translate E7 have not reinitiated after translating some or all of the upstream open reading frames. The data support a model in which the failure of 40S ribosomal initiation complexes to recognize the E6 AUG renders them capable of proceeding efficiently to translate E7.  相似文献   

9.
10.
M Conrad  V J Bubb    R Schlegel 《Journal of virology》1993,67(10):6170-6178
The human papillomavirus (HPV) E5 proteins are predicted from DNA sequence analysis to be small hydrophobic molecules, and the HPV type 6 (HPV-6) and HPV-11 E5 proteins share several structural similarities with the bovine papillomavirus type 1 (BPV-1) E5 protein. Also similar to the BPV-1 E5 protein, the HPV-6 and HPV-16 E5 proteins exhibit transforming activity when assayed on NIH 3T3 and C127 cells. In this study, we expressed epitope-tagged E5 proteins from both the "low-risk" HPV-6 and the "high-risk" HPV-16 in order to permit their immunologic identification and biochemical characterization. While the HPV-6 and HPV-16 E5 proteins fail to form disulfide-linked dimers and oligomers, they did resemble the BPV-1 E5 protein in their intracellular localization to the Golgi apparatus, endoplasmic reticulum, and nuclear membranes. In addition, the HPV E5 proteins also bound to the 16-kDa pore-forming protein component of the vacuolar ATPase, a known characteristic of the BPV-1 E5 protein. These studies reveal a common intramembrane localization and potential cellular protein target for both the BPV and HPV E5 proteins.  相似文献   

11.
12.
13.
Human papillomaviruses (HPVs) from the high-risk group are associated with cervicalcancer, in contrast to HPVs from the low-risk group which are associated with benignlesions. Here, we show that high-risk, but not low-risk HPV E2 proteins, promote amitotic block, often followed by metaphase-specific apoptosis, and which is independentof the viral oncogenes E6 and E7. High-risk HPV E2-expressing cells also showpolyploidy, chromosomal mis-segregation and centrosome amplification leading togenomic instability. We link these defects to a specific and unusually strong interactionbetween high-risk E2 and both Cdc20 and Cdh1, two activators of the AnaphasePromoting Complex (APC), abnormal localization of Cdh1, and accumulation of APCsubstrates like cyclin B, in vivo. The finding that high-risk, but not low-risk HPV E2proteins, induce genomic instability, raises the intriguing possibility that E2 proteinsplay a role in the oncogenic potential of high-risk papillomaviruses.  相似文献   

14.
15.
Transient replication of human papillomavirus DNAs.   总被引:16,自引:9,他引:7       下载免费PDF全文
Information on papillomavirus DNA replication has primarily derived from studies with bovine papillomavirus type 1 (BPV-1). Our knowledge of DNA replication of the human papillomaviruses (HPVs) is quite limited, in part because of the lack of a cell culture system capable of supporting the stable replication of HPV DNA. This study demonstrates that the full-length genomic DNAs of HPV types 11 and 18 (HPV-11 and HPV-18), but not HPV-16, are able to replicate transiently after transfection into several different human squamous cell carcinoma cell lines. This system was used to identify the viral cis and trans elements required for DNA replication. The viral origins of replication were localized to a region of the viral long control region. Like BPV-1, E1 and E2 were the only viral factors required in trans for the replication of plasmids containing the origin. Cotransfection of a plasmid expressing the E1 open reading frame (ORF) from HPV-11 with a plasmid that expresses the E2 ORF from HPV-6, HPV-11, HPV-16, or HPV-18 supported the replication of plasmid DNAs containing the origin regions of HPV-11, HPV-16, or HPV-18, indicating that there are functions shared among the corresponding E1 and E2 proteins and origins of these viruses. Although HPV-16 genomic DNA did not replicate by itself under experimental conditions that supported the replication of HPV-11 and HPV-18 genomic DNAs, expression of the HPV-16 early region functions from a strong heterologous promoter supported the replication of a cotransfected plasmid containing the HPV-16 origin of replication. This finding suggests that the inability of the HPV-16 genomic DNA to replicate transiently in the cell lines tested was most likely due to insufficient expression of the viral E1 and/or E2 genes required for DNA replication.  相似文献   

16.
The mucosotrophic human papillomaviruses (HPVs) are classified as high-risk (HR) or low-risk (LR) genotypes based on their neoplastic properties. We have demonstrated previously that the E7 protein destabilizes p130, a pRb-related pocket protein, thereby promoting S-phase reentry in postmitotic, differentiated keratinocytes of squamous epithelia, and that HR HPV E7 does so more efficiently than LR HPV E7. The E7 proteins of LR HPV-11 and -6b uniquely possess lysine residues following a casein kinase II phosphorylation motif which is critical for the biological function of E7. We now show that mutations of these lysine residues elevated the efficiency of S-phase reentry, independent of their charge. An 11E7 K39,42R mutation moderately increased the association with and the destabilization of p130. Unexpectedly, polyubiquitination on these lysine residues did not attenuate E7 activity, as their mutation caused elevated proteasomal degradation and decreased protein stability. In this regard, the biologically more potent HR HPV E7 proteins were also less stable than the LR HPV E7 proteins. We infer that these lysine residues impede functional protein-protein interactions. A G22D mutation of 11E7 at the pocket protein binding motif possessed augmented efficiency in promoting S-phase reentry and strongly enhanced association with p130 and pRb. The combined effects of these two classes of 11E7 mutations exhibited an efficiency of S-phase reentry comparable to that of HR HPV E7. Thus, these nonconserved residues are primarily responsible for the differential abilities of LR and HR HPV E7 proteins to promote unscheduled DNA replication in organotypic raft cultures.  相似文献   

17.
The E7 proteins of human papillomaviruses (HPVs) promote S-phase reentry in differentiated keratinocytes of the squamous epithelia to support viral DNA amplification. In this study, we showed that nuclear p130 was present in the differentiated strata of several native squamous epithelia susceptible to HPV infection. In contrast, p130 was below the level of detection in HPV-infected patient specimens. In submerged and organotypic cultures of primary human keratinocytes, the E7 proteins of the high-risk mucosotrophic HPV-18, the benign cutaneous HPV-1, and, to a lesser extent, the low-risk mucosotropic HPV-11 destabilized p130. This E7 activity depends on an intact pocket protein binding domain and a casein kinase II (CKII) phosphorylation motif. Coimmunoprecipitation experiments showed that both E7 domains were important for binding to p130 in extracts of organotypic cultures. Metabolic labeling in vivo demonstrated that E7 proteins were indeed phosphorylated in a CKII motif-dependent manner. Moreover, the efficiencies of the E7 proteins of various HPV types or mutations to induce S-phase reentry in spinous cells correlated with their relative abilities to bind and to destabilize p130. Collectively, these data support the notion that p130 controls the homeostasis of the differentiated keratinocytes and is therefore targeted by E7 for degradation to establish conditions permissive for viral DNA amplification.  相似文献   

18.
19.
The human papillomavirus (HPV) E6 and E7 oncoproteins are two major proteins that remain expressing in HPV-associated human cancers. The high-risk HPVs synthesize E6 and E7 oncoproteins to alter the function of cellular regulatory proteins, such as p53 and retinoblastoma gene product, respectively. In this study, we demonstrated that HPV-18 E6 and E7 proteins were able to directly interact with some nuclear receptors (NRs), such as thyroid receptor, androgen receptor, and estrogen receptor (ER), whether or not appropriate hormones were present. The functional roles of these two oncoproteins in NRs depended on the cell type (including ligand), promoter context, and NR type. These two oncoproteins regulated ER functions through ER's AF-1, AF-2, or both. Hence, our results provide new insights into the mechanisms controlling the proliferation and immortalization of HPV infected cells by these two oncoproteins mediating through their regulatory functions in NR systems.  相似文献   

20.
Epidemiological and experimental studies have shown that high-risk human papillomaviruses (HPVs) are the causative agents of cervical cancer worldwide, and that HPV-16 is associated with more than half of these cases. In addition to the well-characterized E6 and E7 oncoproteins of HPV-16, recent evidence increasingly has implicated the HPV-16 E5 protein (16E5) as an important mediator of oncogenic transformation. Since 16E5 has no known intrinsic enzymatic activity, its effects on infected cells are most likely mediated by interactions with various cellular proteins and/or its documented association with lipid rafts. In the present study, we describe a new cellular target that binds to 16E5 in COS cells and in stable human ectocervical cell lines. This target is karyopherin β3, a member of the nuclear import receptor family with critical roles in the nuclear import of ribosomal proteins and in the secretory pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号