首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rabbit liver enzymes 5,10-methylenetetrahydrofolate dehydrogenase, 5,10-methenyltetrahydrofolate cyclohydrolase, and 10-formyltetrahydrofolate synthetase have been purified to apparent homogeneity. Polyacrylamide gel electrophoresis patterns suggest a single protein is responsible for all three catalytic activities. The properties of the dehydrogenase and cyclohydrolase activities suggest that a single active site may catalyze these two reactions. This conclusion is based on spectral changes observed in the conversion of 5,10-methylenetetrahydrofolate to 10-formyltetrahydrofolate, the similarity of dissociation constants determined from initial velocity studies for the two reactions, and the similarity of the pH-activity curves for the two reactions. NADP+ and NADPH lower the Km for 5,10-methenyltetrahydrofolate 2- to 3-fold above pH 7 in the cyclohydrolase reaction but below pH 7 they act as partial inhibitors.  相似文献   

2.
3.
One-carbon metabolism mediated by folate coenzymes plays an essential role in several major cellular processes. In the prokaryotes studied, three folate-dependent enzymes, 10-formyltetrahydrofolate synthetase (EC 6.3.4.3), 5,10-methenyltetrahydrofolate cyclohydrolase (EC 3.5.4.9), and 5,10-methylenetetrahydrofolate dehydrogenase (EC 1.5.1.5) generally exist as monofunctional or bifunctional proteins, whereas in eukaryotes the three activities are present on one polypeptide. The structural organization of these enzymes in plants had not previously been examined. We have purified the 10-formyltetrahydrofolate synthetase activity from spinach leaves to homogeneity and raised antibodies to it. The protein was a dimer with a subunit molecular weight of Mr = 67,000. The Km values for the three substrates, (6R)-tetrahydrofolate, ATP, and formate were 0.94, 0.043, and 21.9 mM, respectively. The enzyme required both monovalent and divalent cations for maximum activity. The 5,10-methylenetetrahydrofolate dehydrogenase and 5,10-methenyltetrahydrofolate cyclohydrolase activities of spinach coeluted separately from the 10-formyltetrahydrofolate synthetase activity on a Matrex Green-A column. On the same column, the activities of the yeast trifunctional C1-tetrahydrofolate synthase coeluted. In addition, antibodies raised to the purified spinach protein immunoinactivated and immunoprecipitated only the 10-formyltetrahydrofolate synthetase activity in a crude extract of spinach leaves. These results suggest that unlike the trifunctional form of C1-tetrahydrofolate synthase in the other eukaryotes examined, 10-formyltetrahydrofolate synthetase in spinach leaves is monofunctional and 5,10-methyl-enetetrahydrofolate dehydrogenase and 5,10-methenyltetrahydrofolate cyclohydrolase appear to be bifunctional. Although structurally dissimilar to the other eukaryotic trifunctional enzymes, the 35 amino-terminal residues of spinach 10-formyltetrahydrofolate synthetase showed 35% identity with six other tetrahydrofolate synthetases.  相似文献   

4.
Saccharomyces cerevisiae possesses three isozymes of 5,10-methylenetetrahydrofolate dehydrogenase (MTD). The NAD-dependent enzyme is the first monofunctional form found in eukaryotes. Here we report its crystallization in a form suitable for high-resolution structure. The space group is P42212 with cell constants a = b = 75.9, c = 160.0 Å, and there is one 36 kDa molecule in the asymmetric unit. Crystals diffract to 2.9 Å resolution. Proteins 26:481–482 © 1996 Wiley-Liss, Inc.  相似文献   

5.
The biosynthesis of formic acid in the poison glands of formicine ants is closely related to the C-1 metabolism of the glandular cells. Experiments utilizing radiolabeled amino acids revealed that serine is a major precursor, contributing both its α and β carbons to formic acids. 5,10[14C]methylene H4folate and 5,10[14C]methenyl H4folate also serve as precursors of formic acid in the poison gland, suggesting that they are intermediates in the pathway. Furthermore, these H4folate derivatives were isolated from poison glands following incubation with [3-14C]serine and proved radioactive. The glandular cells are also exceptionally rich in the enzymes responsible for these reactions, supporting the proposed pathway.Although this pathway has been established in various organism, the uniqueness of the poison gland system is that it accumulates formic acid to large extent, yet avoids its cytotoxicity. This is made possible by a combination of the biochemical characteristics of the pathway and the special morphological features of the poison gland.  相似文献   

6.
Carbamyl phosphate synthase-I and glutamate dehydrogenase both form a complex with mitochondrial aspartate aminotransferase. Instead of these two enzymes competing for the aminotransferase, carbamyl phosphate synthase-I enhances glutamate dehydrogenase-aminotransferase interaction. This suggests that a complex can be formed between all three enzymes. Since this complex is stable in the presence of substrates and modifiers of the three enzymes, it could conceivably convert NH4+ produced from aspartate into carbamyl phosphate. Furthermore, since carbamyl phosphate synthase-I is the predominant protein in liver mitochondria, it could play a major role in placing the aminotransferase and glutamate dehydrogenase in close proximity. Malate removes glutamate dehydrogenase from the tri-enzyme complex and thus could play a role in determining whether glutamate dehydrogenase interacts with carbamyl phosphate synthase-I or is available to participate in reactions with the Krebs cycle. Palmitoyl-CoA has a high affinity for both carbamyl phosphate synthase-I and glutamate dehydrogenase. ATP and malate which, respectively, decrease and enhance binding of palmitoyl-CoA to glutamate dehydrogenase, respectively decrease and enhance the ability of this enzyme to compete with carbamyl phosphate synthase-I for palmitoyl-CoA. Since carbamyl phosphate synthase-I is present in high levels in liver mitochondria and has a high affinity for palmitoyl-CoA, it could play a major role as a reservoir for palmitoyl-CoA.  相似文献   

7.
By using random mutagenesis and enrichment by chemostat culturing, we have developed mutants of Methanobacterium thermoautotrophicum that were unable to grow under hydrogen-deprived conditions. Physiological characterization showed that these mutants had poorer growth rates and growth yields than the wild-type strain. The mRNA levels of several key enzymes were lower than those in the wild-type strain. A fed-batch study showed that the expression levels were related to the hydrogen supply. In one mutant strain, expression of both methyl coenzyme M reductase isoenzyme I and coenzyme F420-dependent 5,10-methylenetetrahydromethanopterin dehydrogenase was impaired. The strain was also unable to form factor F390, lending support to the hypothesis that the factor functions in regulation of methanogenesis in response to changes in the availability of hydrogen.  相似文献   

8.
9.
Various hepatotoxins were added to the medium of primary cultures of adult rat hepatocytes and the release of the cytosolic enzymes lactic dehydrogenase, glutamic-oxaloacetic and glutamic-pyruvic aminotransferases were measured 24 h later. CCl4 at low concentrations caused dose-dependent release of soluble enzymes into medium without appreciable cytolysis of the hepatocytes. Mitochondrial enzymes were not released under these conditions. At 5 mM CCl4, both soluble and mitochondrial glutamic-oxaloacetic aminotransferase were found in the culture medium. Glycyrrhizin, a triterpenoid glycoside of licorice roots, prevented the enzyme release caused by CCl4.Abbreviations CCl4 carbon tetrachloride - GDH glutamic dehydrogenase - GOT glutamic-oxaloacetic aminotransferase - GPT glutamic-pyruvic aminotransferase - LDH lactic dehydrogenase  相似文献   

10.
Two pathways serve for assimilation of ammonia inParacoccus denitrificans. Glutamate dehydrogenase (NADP+) catalyzes the assimilation at a high NH4 + concentration. If nitrate serves as the nitrogen source, glutamate is synthesized by glutamate-ammonia ligase and glutamate synthase (NADPH). At a very low NH4 + concentration, all three enzymes are synthesized simultaneously. No direct relationship exists between glutamate dehydrogenase (NADP+) and glutamate-ammonia ligase inP. denitrificans, while the glutamate synthase (NADPH) activity changes in parallel with that of the latter enzyme. Ammonia does not influence the induction or repression of glutamate dehydrogenase (NADP+). The inner concentration of metabolites indicates a possible repression of glutamate dehydrogenase (NADP+) by the high concentration of glutamine or its metabolic products as in the case when NH4 + is formed by assimilative nitrate reduction. No direct effect of the intermediates of nitrate assimilation on the synthesis of glutamate dehydrogenase (NADP+) was observed.  相似文献   

11.
The activities of formylmethanofuran dehydrogenase, methylenetetrahydromethanopterin dehydrogenase, methylenetetrahydromethanopterin reductase, and heterodisulfide reductase were tested in cell extracts of 10 different methanogenic bacteria grown on H2/CO2 or on other methanogenic substrates. The four activities were found in all the organisms investigated: Methanobacterium thermoautotrophicum,M. wolfei, Methanobrevibacter arboriphilus, Methanosphaera stadtmanae, Methanosarcina barkeri (strains Fusaro and MS), Methanothrix soehngenii, Methanospirillum hungatei, Methanogenium organophilum, and Methanococcus voltae. Cell extracts of H2/CO2 grown M. barkeri and of methanol grown M. barkeri showed the same specific activities suggesting that the four enzymes are of equal importance in CO2 reduction to methane and in methanol disproportionation to CO2 and CH4. In contrast, cell extracts of acetate grown M. barkeri exhibited much lower activities of formylmethanofuran dehydrogenase and methylenetetrahydromethanopterin dehydrogenase suggesting that these two enzymes are not involved in methanogenesis from acetate. In M. stadtmanae, which grows on H2 and methanol, only heterodisulfide reductase was detected in activities sufficient to account for the in vivo methane formation rate. This finding is consistent with the view that the three other oxidoreductases are not required for methanol reduction to methane with H2.  相似文献   

12.
1.
1. The effects of oral sex hormones, dietary fructose and casein without and with actinomycin D or ethionine and fasting upon the activities of two folate-metabolizing enzymes (serine hydroxymethyltransferase (L-Serine: tetrahydrofolate 5,10-hydroxymethyltransferase, E.C. 2.1.2.1) and methylenetetrahydrofolate dehydrogenase (5,10-methylenetetrahydrofolate: NADP oxidoreductase, E.C. 1.5.1.5)) and two glycolytic enzymes (pyruvate kinase (ATP: pyruvate phosphotransferase, E.C. 2.7.1.40) and fructose diphosphate aldolase (fructose-1,6-diphosphate D-glyceraldehyde-3-phosphate lyase, E.C. 4.1.2.13)) were studied in the jejunum of female and male rats.  相似文献   

13.
Serine hydroxymethyltransferase (SHMT) is a pyridoxal‐5′‐phosphate (PLP)‐dependent enzyme belonging to the fold type I superfamily, which catalyzes in vivo the reversible conversion of l ‐serine and tetrahydropteroylglutamate (H4PteGlu) to glycine and 5,10‐methylenetetrahydropteroylglutamate (5,10‐CH2‐H4PteGlu). The SHMT from the psychrophilic bacterium Psychromonas ingrahamii (piSHMT) had been recently purified and characterized. This enzyme was shown to display catalytic and stability properties typical of psychrophilic enzymes, namely high catalytic activity at low temperature and thermolability. To gain deeper insights into the structure–function relationship of piSHMT, the three‐dimensional structure of its apo form was determined by X‐ray crystallography. Homology modeling techniques were applied to build a model of the piSHMT holo form. Comparison of the two forms unraveled the conformation modifications that take place when the apo enzyme binds its cofactor. Our results show that the apo form is in an “open” conformation and possesses four (or five, in chain A) disordered loops whose electron density is not visible by X‐ray crystallography. These loops contain residues that interact with the PLP cofactor and three of them are localized in the major domain that, along with the small domain, constitutes the single subunit of the SHMT homodimer. Cofactor binding triggers a rearrangement of the small domain that moves toward the large domain and screens the PLP binding site at the solvent side. Comparison to the mesophilic apo SHMT from Salmonella typhimurium suggests that the backbone conformational changes are wider in psychrophilic SHMT. Proteins 2014; 82:2831–2841. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
Glycolate pathway in green algae   总被引:4,自引:1,他引:3       下载免费PDF全文
By three criteria, the glycolate pathway of metabolism is present in unicellular green algae. Exogenous glycolate-1-14C was assimilated and metabolized to glycine-1-14C and serine-1-14C. During photosynthetic 14CO2 fixation the distributions of 14C in glycolate and glycine were similar enough to suggest a product-precursor relationship. Five enzymes associated with the glycolate pathway were present in algae grown on air. These were P-glycolate phosphatase, glycolate dehydrogenase (glycolate:dichloroindophenol oxidoreductase), l-glutamate:glyoxylate aminotransferase, serine hydroxymethylase, and glycerate dehydrogenase. Properties of glycerate dehydrogenase and the aminotransferase were similar to those from leaf peroxisomes. The specific activity of glycolate dehydrogenase and serine hydroxymethylase in algae was 1/5 to 1/10 that of the other enzymes, and both these enzymes appear ratelimiting for the glycolate pathway.  相似文献   

15.
All the glutamate dehydrogenase activity in developing castor bean endosperm is shown to be located in the mitochondria. The enzyme can not be detected in the plastids, and this is probably not due to the inactivation of an unstable enzyme, since a stable enzyme can be isolated from castor bean leaf chloroplasts. The endosperm mitochondrial glutamate dehydrogenase consists of a series of differently charged forms which stain on polyacrylamide gel electrophoresis with both NAD+ and NADP+. The chloroplast and root enzymes differ from the endosperm enzyme on polyacrylamide gel electrophoresis. The amination reaction of all the enzymes is affected by high salt concentrations. For the endosperm enzyme, the ratio of activity with NADH to that with NADPH is 6.3 at 250 millimolar NH4Cl and 1.5 at 12.5 millimolar NH4Cl. Km values for NH4+ and NAD(P)H are reduced at low salt concentrations. The low Km values for the nucleotides may favor a role for glutamate dehydrogenase in ammonia assimilation in some situations.  相似文献   

16.
Azospirillum lipoferum strain D-2 possesses the following enzymes for the assimilation of N2 and NH 4 + : nitrogenase, glutamine synthetase, NADPH-dependent glutamate synthase, NADH-/NADPH-dependent glutamate dehydrogenase, and NADH-dependent alanine dehydrogenase. Nitrogenase and glutamine synthetase are repressed, whereas glutamate dehydrogenase and alanine dehydrogenase are induced by NH 4 + . Glutamine synthetase activity is modulated by both repression and depression and also by adenylylation.  相似文献   

17.
The incorporation of radioactive formate into an acid-stable non-volatile form by human erythrocytes is dependent upon the addition of 5-amino-4-imidazolecarboxamide riboside. The formate-incorporating activity of human erythrocytes varies widely among normal individuals and the values obtained are characteristic of the erythrocytes obtained from these individuals. The variation is unrelated to the total folate levels of the erythrocytes as measured by the growth response of Lactobacillus casei but is roughly correlated with the quantity of folate forms in the erythrocytes which support the growth of Steptococcus faecalis. The activities of several enzymes involved in the metabolism of the folate coenzymes has also been measured in extracts of erythrocytes. Extracts from all the individuals contained 10-formyltetrahydrofolate synthase, 5-amino-4-imidazolecarboxamide ribotide transformylase, and 5,10-methylenetetrahydrofolate dehydrogenase. None of the extracts contained detectable quantities of either 5,10-methylenetetrahydrofolate reductase or 5-methyltetrahydrofolate-homocysteine methyltransferase. These data support the conclusion that 5-methyltetrahydrofolate is not in metabolic equilibrium with the other forms of folate in the erythrocyte and the uptake of formate by intact erythrocytes is a function of those forms of the folate coenzymes which can be converted to tetrahydrofolate.  相似文献   

18.
The sulfate-reducing Archaeoglobus fulgidus contains a number of enzymes previously thought to be unique for methanogenic Archaea. The purification and properties of two of these enzymes, of formylmethanofuran: tetrahydromethanopterin formyltransferase and of N 5,N 10-methylenetetrahydromethanopterin dehydrogenase (coenzyme F420 dependent) are described here. A comparison of the N-terminal amino acid sequences and of other molecular properties with those of the respective enzymes from three methanogenic Archaea revealed a high degree of similarity.Abbreviations H4MPT tetrahydromethanopterin - F420 coenzyme - F420 formyltransferase, formylmethanofuran: tetrahydromethanopterin formyltransferase - methylene-H4MPT dehydrogenase N 5,N 10-methylenetetrahydromethanopterin dehydrogenase - methylene-H4MPT recductase N 5,N 10-methylenetetrahydromethanopterin reductase - cyclohydrolase N 5,N 10-methenyltetrahydromethanopterin cyclohydrolase - APS adenosine 5-phosphosulfate - MOPS 3-(N-morpholino) propane sulfonic acid - TRICINE N-tris(hydroxymethyl)methylglycine - MES morpholinoethanesulfonic acid - 1 U 1 mol/min  相似文献   

19.
5,10-Methylenetetrahydrofolate (5,10-CH2-H4PteGlu) was identified as a major active reduced folate in rat bile using high-performance liquid chromatography with electrochemical detection (HPLC—ED). The identification of the folate derivative was based on the similarities in the retention-time profiles, electrochemical properties, UV absorption characteristics and demethylenation profiles of the bile folate and the synthetic standard. An HPLC—ED method was developed for the simultaneous determination of reduced folates including 5,10-CH2-H4PteGlu, tetrahydrofolate (H4PteGlu), 10-formyltetrahydrofolate (10-HCO-H4PteGlu) and 5-methyltetrahydrofolate (5-CH3-H4PteGlu) in rat bile. All peaks of the reduced folates in bile were separated using this method with a total retention time of less than 15 min. The detection limit was 0.01 ng/injection for H4PteGlu, 10-HCO-H4PteGlu and 5-CH3-H4PteGlu, and 0.02 ng/injection for 5,10-CH2-H4PteGlu at a signal-to-noise ratio of 3 and an injection volume of 100 μl. Recoveries of synthetic folates from rat bile were higher than 90%. The distribution percentages of 5,10-CH2-H4PteGlu, H4PteGlu, 10-HCO-H4PteGlu and 5-CH3-H4PteGlu in rat bile were 29.6 ± 7.2, 17.7 ± 3.5, 24.4 ± 6.5 and 28.2 ± 7.1%, respectively, and total secretion rate of the bile reduced folates was 1514 ± 663 ng/h (mean ± S.D., n = 9).  相似文献   

20.
Activities of key enzymes of Calvin cycle and C4 metabolism, rate of 14CO2 fixation in light and dark and the initial products of photosynthetic 14CO2 fixation were determined in flag leaf and different ear parts of wheat viz. pericarp, awn and glumes. Compared to the activities of RuBP carboxylase and other Calvin cycle enzymes viz. NADP-glyceraldehyde-3-phosphate dehydrogenase, NAD-glyceraldehyde-3-phosphate dehydrogenase and ribulose-5-phosphate kinase, the levels of PEP carboxylase and other enzymes of C4 metabolism viz. NADP-malate dehydrogenase, NAD-malate dehydrogenase, NADP-malic enzyme, NAD-malic enzyme, glutamate oxaloacetate transaminase genase, NADP-malic enzyme, NAD-malic enzyme, glutamate oxaloacetate transaminase and glutamate pyruvate transaminase, were generally greater in ear parts than in the flag leaf. In contrast to CO2 fixation in light, the various ear parts incorporated CO2 in darkness at much higher rates than flag leaf. In short term assimilation of 14CO2 by illuminated ear parts, most of the 14C was in malate with less in 3-phosphoglyceric acid, whereas flag leaves incorporated most into 3-phosphoglyceric acid. It seems likely that ear parts have the capability of assimilating CO2 by the C4 pathway of photosynthesis and utilise PEP carboxylase for recapturing the respired CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号