首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dystrobrevins (DBs) bind directly to dystrophin and are prominent components of the dystrophin-associated protein complex (DAPC) that links the cytoskeleton to the extracellular matrix. They are involved in brain development, synapse formation and plasticity, as well as water and ion homeostasis. However, the role of DB in non-muscular cells is not clear. In this study, we show that different α-dystrobrevin isoforms are present in promyelocytic leukemia (NB4) cells. Only the biggest α-dystrobrevin isoform (DB-α), which can be important for its function, was expressed in the membrane fraction of NB4 cells; the other α-DB isoforms were found in the hydrophilic cell fractions. Employing the immunoprecipitation and mass spectrometry, we identified novel α-DB-interacting proteins involved in cytoskeleton reorganization (actin, tropomyosin, gelsolin, tubulin) and signal transduction process (stathmin, prohibitin, RIBA) during proliferation and differentiation of NB4 cells. Our results suggest that α-DB isoforms play a central role in cytoskeleton reorganization via their multiple interactions with actin and actin-associating proteins and may participate in signal transduction process during NB4 cell granulocytic differentiation via directly and non directly associated proteins.  相似文献   

2.
3.
Cyclo-oxygenase (COX) production in human promyelocytic leukaemia (HL-60) cells was studied during monocytic differentiation induced by 1 alpha, 25-dihydroxyvitamin D3 (24 nM; 3 days) or phorbol 12-myristate 13-acetate (100 nM; 1 day), or during granulocytic differentiation induced by retinoic acid (1 microns; 4 days). Undifferentiated or differentiated HL-60 cells were labelled with [35S]methionine, and membrane-bound COX was solubilized and quantified by SDS/PAGE. Immunoprecipitated 35S-labelled COX from cells induced to differentiate into monocytic or granulocytic lineage were clearly detected on the autoradiograms as a protein of approx. 70 kDa molecular size, whereas only a very faint COX band was detected in untreated HL-60 cells. During both monocytic and granulocytic differentiation, COX activity (measured by the conversion of exogenous arachidonic acid into prostaglandin E2) was dramatically increased. In addition, thromboxane synthesis was preferentially enhanced during monocytic differentiation. HL-60 cells, induced to differentiate into the monocytic or granulocytic lineage, provide a useful tool to investigate the cellular mechanisms involved in regulation of the synthesis of individual prostanoid-metabolizing enzymes.  相似文献   

4.
5.
6.
The biochemical properties and spatial localization of the protein alpha-dystrobrevin and other isoforms were investigated in cells of the human promyelocytic leukemia line HL-60 granulocytic differentiation as induced by retinoic acid (RA). Alpha-dystrobrevin was detected both in the cytosol and the nuclei of these cells, and a short isoform (gamma-dystrobrevin) was modified by tyrosine phosphorylation soon after the onset of the RA-triggered differentiation. Varying patterns of distribution of alpha-dystrobrevin and its isoforms could be discerned in HL-60 promyelocytes, RA-differentiated mature granulocytes, and human neutrophils. Moreover, the gamma-dystrobrevin isoform was found in association with actin and myosin light chain. The results provide new information about potential involvement of alpha-dystrobrevin and its splice isoforms in signal transduction in myeloid cells during induction of granulocytic differentiation and/or at the commitment stage of differentiation or phagocytic cells.  相似文献   

7.
Recently, we have reported that 3-hydrogenkwadaphnin (3-HK), a diterpene ester isolated from Dendrostellera lessertii (Thymealeaceae), is very effective against leukemia cell lines without any detectable effects on normal cells (Moosavi et al., 2005b). In this study, we report that 3-HK induces G1 cell-cycle arrest, differentiation and apoptosis in APL NB4 cell line. Indeed, the drug between 24 to 96 h induced 7-65% growth inhibition of NB4 cells. Cell viability was also decreased by 2-55% between 24 to 96 h treatments with the drug, respectively. These effects of the drug were also dose-dependent. According to flow cytomtry results, 3-HK (15 nM) induced a significant G1-arrest up to 24 h which was consequently followed with appearance of sub-G(1) peak at 72 to 96 h. Hoechst 33258 staining and DNA fragmentation assays confirmed the occurrence of apoptosis among the treated cells. On the other hand, NBT reducing assay, Wright-Giemsa staining, phagocytic activity and expression of cell surface markers (CD11b and CD14) confirmed that the inhibition of proliferation is associated with differentiation especially toward macrophage-like morphology. Interestingly, 3-HK at 5 and 10 nM enhanced the effects of all-trans retinoic acid (ATRA) in NB4 cells. Based on these results, 3-HK might become an ideal candidate for treatment of APL patients pending full exploration of its biological functions.  相似文献   

8.
Acute promyelocytic leukemia (APL) is characterized by a specific chromosome translocation t(15;17), which results in the fusion of the promyelocytic leukemia gene (PML) and retinoic acid receptor alpha gene (RARalpha). APL can be effectively treated with the cell differentiation inducer all-trans retinoic acid (ATRA). NB4 cells, an acute promyelocytic leukemia cell line, have the t(15;17) translocation and differentiate in response to ATRA, whereas HL-60 cells lack this chromosomal translocation, even after differentiation by ATRA. To identify changes in the gene expression patterns of promyelocytic leukemia cells during differentiation, we compared the gene expression profiles in NB4 and HL-60 cells with and without ATRA treatment using a cDNA microarray containing 10,000 human genes. NB4 and HL-60 cells were treated with ATRA (10(-6)M) and total RNA was extracted at various time points (3, 8, 12, 24, and 48h). Cell differentiation was evaluated for cell morphology changes and CD11b expression. PML/RARalpha degradation was studied by indirect immunofluoresence with polyclonal PML antibodies. Typical morphologic and immunophenotypic changes after ATRA treatment were observed both in NB4 and HL-60 cells. The cDNA microarray identified 119 genes that were up-regulated and 17 genes that were down-regulated in NB4 cells, while 35 genes were up-regulated and 36 genes were down-regulated in HL60 cells. Interestingly, we did not find any common gene expression profiles regulated by ATRA in NB4 and HL-60 cells, even though the granulocytic differentiation induced by ATRA was observed in both cell lines. These findings suggest that the molecular mechanisms and genes involved in ATRA-induced differentiation of APL cells may be different and cell type specific. Further studies will be needed to define the important molecular pathways involved in granulocytic differentiation by ATRA in APL cells.  相似文献   

9.
Sphingosylphosphorylcholine (SPC) is the major component of high-density lipoproteins (HDL) in blood plasma. The bioactive lipid acts mainly via G protein coupled receptors (GPCRs). Similar to ligands of other GPCRs, SPC has multiple biological roles including the regulation of proliferation, migration, angiogenesis, wound healing and heart rate. Lysophospholipids and their receptors have also been implicated in cell differentiation. A potential role of SPC in stem cell or tumour cell differentiation has been elusive so far. Here we examined the effect of SPC on the differentiation of mouse embryonic stem (ES) cells and of human NB4 promyelocytic leukemia cells, a well established tumour differentiation model. Our data show that mouse embryonic stem cells and NB4 cells express the relevant GPCRs for SPC. We demonstrate both at the level of morphology and of gene expression that SPC induces neuronal and cardiac differentiation of mouse ES cells. Furthermore, SPC induces differentiation of NB4 cells by a mechanism which is critically dependent on the activity of the MEK-ERK cascade. Thus, the bioactive lipid SPC is a novel differentiation inducing agent both for mouse ES cells, but also of certain human tumour cells.  相似文献   

10.
The glyoxalase system of human promyelocytic leukaemia HL60 cells was substantially modified during differentiation to neutrophils. The activity of glyoxalase I was decreased and the activity of glyoxalase II was markedly increased relative to the level in control HL60 promyelocytes. There was a decrease in the apparent maximum velocity, Vmax, of glyoxalase I, and an increase in the Vmax of glyoxalase II. The apparent Michaelis constants for both enzymes remained unchanged. The flux of intermediates metabolised via the glyoxalase system increased during differentiation, as judged by the formation of D-lactic acid, whereas the percentage of glucotriose metabolised via the glyoxalase system remained unchanged. The cellular concentrations of the glyoxalase substrates, methylglyoxal and S-D-lactoylglutathione, were markedly decreased during differentiation. The maturation of HL60 promyelocytes is associated with an increased ability to metabolise S-D-lactoylglutathione by glyoxalase II and a concomitant decrease in the mean intracellular concentrations of S-D-lactoylglutathione and methylglyoxal. The maintenance of a high concentration of S-D-lactoylglutathione in HL60 promyelocytes may be related to the status of the microtubular cytoskeleton, since S-D-lactoylglutathione potentiates the GTP-promoted assembly of microtubules.  相似文献   

11.
Neolacto-series gangliosides having linear poly-N-acetyl-lactosaminyl oligosaccharide structure have been demonstrated to be increased characteristically during granulocytic differentiation of human promyelocytic leukemia cell line HL-60 cells induced by dimethyl sulfoxide or retinoic acid (Nojiri, H., Takaku, F., Tetsuka, T., Motoyoshi, K., Miura, Y., and Saito, M. (1984) Blood 64, 534-541). When HL-60 cells were cultured in the presence of neolacto-series gangliosides prepared from mature granulocytes, the cells were found to be differentiated into mature granulocytes on the basis of the changes of morphology, surface membrane antigens, nonspecific esterase activity, and the activity of phagocytosis and respiratory burst. The differentiation of cells was dependent on the concentration of gangliosides and accompanied with inhibition of cell growth. These findings suggest that the particular ganglioside molecules play an important role in regulation of cell differentiation and that the appearance of neolacto-series gangliosides on cell surface membrane not only triggers the differentiation but also determines the direction of differentiation in HL-60 cells.  相似文献   

12.
13.
Human promyelocytic leukemia HL-60 cells are well known to differentiate into granulocytes or monocytes in the presence of some agents such as DMSO or PMA, respectively. Differentiated HL-60 cells become resistant to some apoptotic stimuli including anticancer drugs or irradiation though undifferentiated cells significantly respond to these stimuli. TRAIL (TNF-related apoptosis-inducing ligand) which is also known as Apo2 ligand (Apo2L), a new member of TNF family, can induce apoptosis in some tumor cells but not in many normal cells. We show here that apoptosis is well induced in HL-60 cells by TRAIL, but susceptibility to TRAIL is reduced during granulocytic differentiation by DMSO. We also suggest some possible mechanisms by which granulocytic differentiated cells become resistant to TRAIL-induced apoptosis. First, in granulocytic differentiated cells, expression of antagonistic decoy receptors for TRAIL (TRAIL-R3/TRID/DcR1/LIT and TRAIL-R4/TRUNDD/DcR2) were enhanced. In addition, expression of Toso, a cell surface apoptosis regulator, seemed to block activation of caspase-8 by TRAIL via enhanced expression of FLIPL in granulocytic differentiated cells. These findings suggest that differentiated cells are resistant using plural mechanisms against various apoptosis-inducing stimuli rather than undifferentiated cells.  相似文献   

14.
Human promyelocytic leukaemic cells, HL-60, arrested in mitosis by nocodazole were released in the presence of 1alpha,25-dihydroxyvitamin D3 and thymidine or hydroxyurea. Cells moved from early G1 period to the G1/S boundary and differentiated. Furthermore, cells arrested at the G1/S boundary by double thymidine block were released, with 1alpha,25-dihydroxyvitamin D3 being added at the end of DNA synthesis. Under the latter conditions, differentiated cells developed, indicating that DNA synthesis is not required for cell differentiation.  相似文献   

15.
16.
The expression and activity of NADPH oxidase increase when HL‐60 cells are induced into terminally differentiated cells. However, the function of NADPH oxidase in differentiation is not well elucidated. With 150–500 μM H2O2 inducing differentiation of HL‐60 cells, we measured phagocytosis of latex beads and investigated cell electrophoresis. Two inhibitors of NADPH oxidase, DPI (diphenyleneiodonium) and APO (apocynin), blocked the differentiation potential of cells induced by 200 μM H2O2. However, H2O2 stimulated the generation of intracellular superoxide (O2 ? ?), which decreased in the presence of the two inhibitors. DPI also inhibited H2O2‐induced ERK (extracellular‐signal‐regulated kinase) activation, as detected by Western blotting. Furthermore, PD98059, the inhibitor of the ERK pathway, inhibited the differentiation of HL‐60 cells induced by H2O2. This shows that H2O2 can activate NADPH oxidase, leading to O2 ? ? production, followed by ERK activation and ultimately resulting in the differentiation of HL‐60 cells. The data indicate that NADPH oxidase is an important cell signal regulating cell differentiation.  相似文献   

17.
Introduction  In this study, we delineated the apoptotic signaling pathways activated by sodium selenite in NB4 cells. Materials and methods  NB4 cells were treated with 20 μM sodium selenite for different times. The activation of caspases and ER stress markers, ROS levels, mitochondrial membrane potential and cell apoptosis induced by sodium selenite were analyzed by immunoblotting analysis, DCF fluorescence and flow cytometric respectively. siRNA was used to detect the effect of GADD153 on selenite-induced cell apoptosis. Conclusions  Sodium selenite-induced reactive oxygen species generation is an early event that triggers endoplasmic reticulum stress mitochondrial apoptotic pathways in NB4 cells.  相似文献   

18.

Background

Extracellular ATP is an endogenous signaling molecule released by various cell types and under different stimuli. High concentrations of ATP released into the extracellular medium activate the P2X7 receptor in most inflammatory conditions. Here, we seek to characterize the effects of ATP in human intestinal epithelial cells and to evaluate morphological changes in these cells in the presence of ATP.

Methods

We treated human intestinal epithelial cells with ATP and evaluated the effects of this nucleotide by scanning and transmission electron microscopy analysis and calcium measurements. We used flow cytometry to evaluate apoptosis. We collected human intestinal explants for immunohistochemistry, apoptosis by the TUNEL approach and caspase-3 activity using flow cytometry analyses. We also evaluated the ROS production by flow cytometry and NO secretion by the Griess technique.

Results

ATP treatment induced changes characteristic of cell death by apoptosis and autophagy but not necrosis in the HCT8 cell line. ATP induced apoptosis in human intestinal explants that showed TUNEL-positive cells in the epithelium and in the lamina propria. The explants exhibited a significant increase of caspase-3 activity when the colonic epithelial cells were incubated with IFN-gamma followed by ATP as compared to control cells. In addition, it was found that antioxidants were able to inhibit both the ROS production and the apoptosis induced by ATP in epithelial cells.

General significance

The activation of P2X7 receptors by ATP induces apoptosis and autophagy in human epithelial cells, possibly via ROS production, and this effect might have implications for gut inflammatory conditions.  相似文献   

19.
《Free radical research》2013,47(11):1328-1337
Abstract

This paper studied the effects of physiologically available oxidants on HL 60 differentiation induced by all-trans retinoic acid (ATRA) or dimethyl sulfoxide (DMSO). Hydrogen peroxide (15 μM) and taurine chloramine (200 μM) induced HL 60 differentiation, which was detected by CD11b expression and superoxide production. Cd11b and p67phox mRNA expression was also augmented by these oxidants. In contrast, reducing chemicals, such as dithiothreitol, 2,3-dimercapto-1-propanol and N-acetylcysteine inhibited CD11b expression. Notably, DMSO inhibited methionine sulfoxide reductase activity, induced heme oxygenase-1 (ho-1) mRNA and enhanced oxidant-induced cell death, which indicated that DMSO intensified oxidative stress. After the addition of oxidants, ho-1 expression preceded the cd11b expression. Vicinal dithiol-reactive phenylarsine oxide (50 nM) also increased CD11b expression induced by DMSO or ATRA. These observations suggested that oxidative stress enhanced granulocytic differentiation of HL 60 cells and that leukaemic cell differentiation was affected by cellular redox status.  相似文献   

20.
Melatonin is an indoleamine secreted by the pineal gland that shows multiple tasks. This ubiquitously acting free radical scavenger has recently been shown to stimulate the production of reactive oxygen species (ROS) in tumour cells, making them undergo apoptosis, whilst it prevents apoptosis in healthy cells. The mechanisms by which melatonin exerts these dual actions are, however, not yet clearly understood. Thus, the aim of this study was to further investigate how melatonin can enhance oxidative stress-induced apoptosis in a leukaemia cell line. The results show that melatonin increased the apoptotic effects of H(2)O(2) in human myeloid HL-60 cells as assessed by cellular viability, mitochondrial permeability transition induction, mitochondrial membrane depolarization, ROS generation, caspases 3, 8 and 9 activity, phosphatidylserine externalization, and DNA fragmentation techniques. When healthy leucocytes were exposed to H(2)O(2), melatonin increased the viability of the cells. Taken together, the findings indicate that melatonin is a potential physiological tool capable of protecting healthy cells from chemotherapy-induced ROS production as well as inducing tumour cell death. Because cancer cells manifest increased oxidative stress as a result of their elevated metabolism, the use of melatonin may be useful in impairing their ROS buffering capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号