首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During cold exposure, animals upregulate their metabolism and food intake, potentially exposing them to elevated reactive oxygen species (ROS) production and oxidative damage. We investigated whether acute cold (7 +/- 3 degrees C) exposure (1, 10, or 100 h duration) affected protein oxidation and proteasome activity, when compared to warm controls (22 +/- 3 degrees C), in a small mammal model, the short-tailed field vole Microtus agrestis. Protein carbonyls and the chymotrypsin-like proteasome activity were measured in plasma, heart, liver, kidney, small intestine (duodenum), skeletal muscle (gastrocnemius), and brown adipose tissue (BAT). Trypsin-like and peptidyl-glutamyl-like proteasome activities were determined in BAT, liver, and skeletal muscle. Resting metabolic rate increased significantly with duration of cold exposure. In skeletal muscle (SM) and liver, protein carbonyl levels also increased with duration of cold exposure, but this pattern was not repeated in BAT where protein carbonyls were not significantly elevated. Chymotrpsin-like proteasome activity did not differ significantly in any tissue. However, trypsin-like activity in SM and peptidyl-glutamyl-like activity in both skeletal muscle and liver, were reduced during the early phase of cold exposure (1-10 h), correlated with the increased carbonyl levels in these tissues. In contrast there was no reduction in proteasome activity in BAT during the early phase of cold exposure and peptidyl-glutamyl-like activity was significantly increased, correlated with the lack of accumulation of protein carbonyls in this tissue. The upregulation of proteasome activity in BAT may protect this tissue from accumulated oxidative damage to proteins. This protection may be a very important factor in sustaining uncoupled respiration, which underpins nonshivering thermogenesis at cold temperatures.  相似文献   

2.
We investigated whether cold acclimation leads to increased activity of the antioxidant defense enzymes and muscle injury. Comparisons were between short track skaters (n=6) and inline skaters (n=6) during rest and at submaximal cycling (65% VO2max) in cold (ambient temperature: 5+/-1 degrees C, relative humidity: 41+/-8%) and warm conditions (ambient temperature: 21+/-1 degrees C, relative humidity: 35+/-5%), during 60 min, respectively, and during the recovery phase. Erythrocyte superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSHpx), reduced glutathione (GSH), thiobarbituric substance acid (TBARS), serum creatine kinase (CK), lactate dehydrogenase (LDH), plasma myoglobin (Mb) and cortisol were determined. Activities of CAT and GSHpx and the level of GSH and TBARS in erythrocyte and the level of LDH in serum were elevated in cold acclimated subjects. We suggested that the compensatory increase in antioxidative defense enzymes resulting from long-term cold exposure may reflect the elevated reactive oxygen species (ROS) production and muscle injury at this environment acclimation.  相似文献   

3.
Glucose, glycogen, and insulin responses in the hypothermic rat   总被引:1,自引:0,他引:1  
J M Steffen 《Cryobiology》1988,25(2):94-101
The rat appears to be unable to utilize glucose during hypothermia. The objective of this study was to examine carbohydrate homeostasis during induction, hypothermia, and rewarming phases. Groups of normothermic animals were euthanized to serve as time controls for comparison. Hypothermia (15 degrees C) was produced by exposure to helox (80% helium:20% oxygen) at 0 +/- 1 degree C. Hyperglycemia was noted during the induction process (169 +/- 8 in control vs 326 +/- 49 mg/dl). Serum glucose increased further during 4 hr of hypothermia, but following rewarming (Tre of 33 +/- 1 degrees C) was reduced (153 +/- 16 mg/dl) significantly (P less than 0.05). Serum insulin was depressed during hypothermic induction (from 48 +/- 4 in controls to 19 +/- 3 microU/ml in hypothermic rats) and increased only slightly during the arousal process, remaining significantly lower than in normothermic subjects. Initial hepatic, skeletal muscle, and cardiac glycogen concentrations were reduced 34, 68, and 75%, respectively, during hypothermic induction. While liver glycogen decreased further during 4 hr of hypothermia, skeletal and cardiac stores increased markedly. During rewarming, hepatic glycogen was markedly decreased, while skeletal and cardiac stores were maintained. These data suggest that hyperglycemia in the hypothermic rat can be accounted for by glycogenolysis and hypoinsulinemia. In addition, this study indicates repletion of skeletal and cardiac muscle glycogen during maintained hypothermia and sparing of muscle glycogen during rewarming.  相似文献   

4.
Diving seals experience heart rate reduction and preferential distribution of the oxygenated blood flow to the heart and brain, widespread peripheral vasoconstriction, and selective ischemia in the most hypoxia-tolerant tissues. The first breath after the dive restores the oxygenated blood flow to all tissues and raises the potential for the production of reactive oxygen species (ROS). We hypothesized that in order to counteract the damaging effects of ROS and to tolerate repetitive cycles of ischemia/reperfusion associated with diving, ringed seal (Phoca hispida) tissues have elevated activities of antioxidant enzymes. Activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) were measured by spectrophotometric techniques in heart, kidney, liver, lung, and muscle extracts of ringed seals and domestic pigs (Sus scrofa). The results suggest that in ringed seal heart SOD, GPx and GST activities are an efficient protective mechanism for counteracting ROS production and its deleterious effects. Apparently CAT activity in seal liver and GPx activity in seal muscle participate in the removal of hydroperoxides, while seal lung appears to be protected from oxidative damage by SOD and GPx activities.  相似文献   

5.
为探讨低温对机体能量代谢、器官/组织抗氧化能力和过氧化自由基水平的影响及其内在联系,本研究测定了不同时间低温和梯度低温处理的黑线仓鼠的摄食量、体重、主要内脏器官/组织的过氧化物歧化酶(SOD)、过氧化氢酶(CAT)、H2O2和丙二醛(MDA)水平。低温使摄食量显著增加,但未影响体重。低温暴露42 d使心脏和骨骼肌MDA水平、骨骼肌SOD活性显著升高;梯度低温使脑和肾脏H2O2水平、肝脏和骨骼肌SOD活性显著降低,使脑、肝脏、肺、肾脏MDA水平、脑和小肠SOD活性显著升高。抗氧化能力和过氧化自由基水平在不同器官之间相关性存在差异,同一器官内二者的相关性在肾脏为100%,肝脏66.7%,骨骼肌50.0%。结果表明:(1)过氧化自由基的产生与低温暴露的时间和程度有关;(2)不同器官/组织过氧化自由基水平不同;(3)部分器官/组织抗氧化酶活性的变化与过氧化自由基水平的变化密切相关,可能是防止过氧化损伤的主要防御系统。  相似文献   

6.
Factors affecting cold-induced hypertension in rats   总被引:3,自引:0,他引:3  
A 3- to 4-week exposure of rats to a cold environment (5 +/- 2 degrees C) induces hypertension, including elevation of systolic, diastolic, and mean blood pressures and cardiac (left ventricular) hypertrophy. The studies described here were designed to investigate some factors affecting both the magnitude and the time course for development of cold-induced hypertension. The objective of the first study was to determine whether there was an ambient temperature at which the cold-induced elevation of blood pressure did not occur. The objective of the second experiment was to determine whether body weight at the time of exposure to cold affected the magnitude and time course for development of hypertension. To assess the first objective, male rats were housed in a chamber whose temperature was maintained at 5 +/- 2 degrees C while others were housed in an identical chamber at 9 +/- 2 degrees C. After 7 days of exposure to cold, the rats exposed to the colder temperature had a significant elevation of blood pressure (140 +/- 2 mm Hg) compared with the group maintained at 9 degrees C (122 +/- 3 mm Hg). The rats exposed to 9 degrees C had no significant elevation of systolic blood pressure at either 27 or 40 days after initiation of exposure to cold. At the latter time, the temperature in the second chamber was reduced to 5 +/- 2 degrees C. By the 25th day of exposure to this ambient temperature, the rats had a significant increase in systolic blood pressure above their levels at 9 degrees C. Thus, there appears to be a threshold ambient temperature for elevation of blood pressure during exposure to cold. That temperature appears to lie somewhere between 5 and 9 degrees C. The second objective was assessed by placing rats varying in weight from approximately 250 to 430 g in air at 5 degrees C. There was a highly significant direct relationship (r = 0.96) between body weight at the time of introduction to cold and the number of days required to increase systolic blood pressure by 10 mm Hg above pre-cold exposure level. The third objective was to make an initial assessment of potential differences among strains of rats with respect to development of cold-induced hypertension. To this end, rats of the Fischer 344 strain were used. Systolic blood pressures of these rats also increased during chronic exposure to cold.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Chronic exposure of rats to cold air induces hypertension, including elevation of blood pressure and cardiac hypertrophy. The present study was designed to assess reversibility of these changes after removal from cold. Five groups of six male rats each were exposed to cold (5 +/- 2 degrees C) for 39 days, while six control rats were maintained at 26 +/- 2 degrees C. Systolic blood pressures of the rats in one of the cold-treated groups, as well as the controls, were measured twice weekly throughout the experiment. Blood pressure of the cold-exposed rats (150 +/- 3 mmHg; 1 mmHg = 133.3 Pa) became elevated significantly above that of controls (129 +/- 3 mmHg) within 4 weeks. On day 39 of cold exposure, one group (six rats) of the cold-treated rats was sacrificed while still in the cold. The remaining four groups of cold-treated rats were than removed from cold and kept at 26 +/- 2 degrees C. One group of cold-treated rats was sacrificed weekly thereafter. During the last week, the six control rats were also sacrificed. At death, the heart, kidneys, and adrenal glands were removed and weighed. Mean heart weight of the cold-treated group (346 +/- 7 mg/100 g body weight), sacrificed prior to removal from cold, was significantly (p less than 0.01) greater than that of controls (268 +/- 5 mg/100 g body weight). The increased heart weight of the cold-treated group appeared to result mainly from an increase in left ventricular weight.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Methyl parathion (MP), an organophosphate widely applied in agriculture and aquaculture, induces oxidative stress due to free radical generation and changes in the antioxidant defense system. The antioxidant roles of selenium (Se) were evaluated in Brycon cephalus exposed to 2 mg L(-1) of Folisuper 600 BR (MP commercial formulation - MPc, 600 g L(-1)) for 96 h. Catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione S-transferase (GST), reduced glutathione (GSH) and lipid peroxidation (LPO) levels in the gills, white muscle and liver were evaluated in fish fed on diets containing 0 or 1.5 mg Se kg(-1) for 8 weeks. In fish treated with a Se-free diet, the MPc exposure increased SOD and CAT activities in all tissues. However, the GPx activity decreased in white muscle and gills whereas no alterations were observed in the liver. MPc also increased GST activity in all tissues with a concurrent decrease in GSH levels. LPO values increased in white muscle and gills and did not change in liver after MPc exposure. A Se-supplemented diet reversed these findings, preventing increases in LPO levels and concurrent decreases in GPx activity in gills and white muscle. Similarly, GSH levels were maintained in all tissue after MPc exposure. These results suggest that dietary Se supplementation protects cells against MPc-induced oxidative stress.  相似文献   

9.
萝卜硫素(sulforaphane,SFN)是一种在十字花科植物中含量丰富,且具有抗氧化效应的天然物质。本文基于核因子E2相关因子2(nuclear factor E2-related factor 2,Nrf2)介导的抗氧化系统,探究不同时长低温暴露对骨骼肌抗氧化酶的影响及SFN对低温暴露骨骼肌抗氧化能力的作用。首先,30只雄性C57BL/6N小鼠随机分为常温对照组(0 h组)、低温暴露1 h组(1 h组)和低温暴露3 h组(3 h组)。其次,40只雄性C57BL/6N小鼠随机分为PBS常温对照组(PBS+Con),PBS低温暴露3 h组(PBS+Cold),SFN常温对照组(SFN+Con)和SFN低温暴露3 h组(SFN+Cold)。小鼠在急性温度干预前腹腔注射4次SFN或等体积PBS。急性低温暴露后,取小鼠骨骼肌,试剂盒检测活性氧(ROS)水平、总抗氧化能力(T-AOC)、还原型谷胱甘肽(GSH)和氧化型谷胱甘肽(GSSG)含量;荧光实时定量PCR检测Nrf2介导的抗氧化酶和参与生成谷胱甘肽相关酶的mRNA转录水平;Western blot检测Nrf2介导的抗氧化酶蛋白表达。结果显示,与0和1 h组相比,3 h组小鼠骨骼肌Nrf 2和抗氧化酶基因(Gpx 1、Hmox1、Cat、Sod 1和Nqo 1)的mRNA转录水平显著降低,ROS水平显著增加。与PBS+Con组相比,PBS+Cold组小鼠骨骼肌Nrf2和抗氧化酶(HMOX1和CAT)蛋白表达、GSH/GSSG比值及T-AOC水平显著降低,而GSSG含量和ROS水平增加。与PBS+Cold组相比,SFN+Cold组小鼠骨骼肌Nrf 2 mRNA及其蛋白表达、抗氧化酶(HMOX1和SOD1)蛋白表达、抗氧化酶基因(Gpx 1、Hmox 1、Cat、Sod 1和Nqo 1)mRNA转录水平、参与GSH生成的酶基因(Gclm和Gss)mRNA转录水平、GSH/GSSG比值以及T-AOC水平显著提高,而GSSG含量和ROS水平显著降低。综上,3 h急性低温暴露降低了Nrf2介导的抗氧化作用。而低温暴露前给予SFN补充,则激活了Nrf2介导的抗氧化酶和谷胱甘肽抗氧化系统,增强了骨骼肌抗氧化能力。  相似文献   

10.
The effects of hypoxia exposure and subsequent normoxic recovery on the levels of lipid peroxides (LOOH), thiobarbituric acid reactive substances (TBARS), carbonylproteins, total glutathione levels, and the activities of six antioxidant enzymes were measured in brain, liver, kidney and skeletal muscle of the common carp Cyprinus carpio. Hypoxia exposure (25% of normal oxygen level) for 5h generally decreased the levels of oxidative damage products, but in liver TBARS content were elevated. Hypoxia stimulated increases in the activities of catalase (by 1.7-fold) and glutathione peroxidase (GPx) (by 1.3-fold) in brain supporting the idea that anticipatory preparation takes place in order to deal with the oxidative stress that will occur during reoxygenation. In liver, only GPx activity was reduced under hypoxia and reoxygenation while other enzymes were unaffected. Kidney showed decreased activity of GPx under aerobic recovery but superoxide dismutase (SOD) and catalase responded with sharp increases in activities. Skeletal muscle showed minor changes with a reduction in GPx activity under hypoxia exposure and an increase in SOD activity under recovery. Responses by antioxidant defenses in carp organs appear to include preparatory increases during hypoxia by some antioxidant enzymes in brain but a more direct response to oxidative insult during recovery appears to trigger enzyme responses in kidney and skeletal muscle.  相似文献   

11.
The effect of exercise on oxidant stress and on alterations in antioxidant defense in elderly has been investigated extensively. However, the impact of regularly performed long-term physical activity starting from adulthood and prolonged up to the old age is not yet clear. We have investigated the changes in the activities of antioxidant enzymes - superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) - and lipid peroxidation in various tissues of rats which had performed (old-trained) or had not performed (old-control) regular swimming exercise for one year. These animals were compared with young-sedentary rats. Increased lipid peroxidation was observed with ageing in all tissues (heart, liver, kidney, striated muscle) and swimming had no additional effect on this elevation of lipid peroxidation. Heart and striated muscle SOD activites, and striated muscle CAT activity increased as a consequence of ageing, whereas kidney and liver CAT activities, as well as GPx activities in kidney, liver, lung and heart were significantly decreased compared to young controls. Lung and heart SOD, liver CAT activities as well as GPx activities in liver, lung and heart were increased significantly in rats which performed exercise during ageing, compared to the old-control group. These findings suggest that lifelong exercise can improve the antioxidant defense in many tissues without constituting any additional oxidant stress.  相似文献   

12.
The effect of long-term cold exposure on skeletal and cardiac muscle protein turnover was investigated in young growing animals. Two groups of 36 male 28-day-old rats were maintained at either 5 degrees C (cold) or 25 degrees C (control). Rates of protein synthesis and degradation were measured in vivo on days 5, 10, 15, and 20. Protein mass by day 20 was approximately 28% lower in skeletal muscle (gastrocnemius and soleus) and approximately 24% higher in heart in cold compared with control rats (P < 0.05). In skeletal muscle, the fractional rates of protein synthesis (k(syn)) and degradation (k(deg)) were not significantly different between cold and control rats, although k(syn) was lower (approximately -26%) in cold rats on day 5; consequent to the lower protein mass, the absolute rates of protein synthesis (approximately -21%; P < 0. 05) and degradation (approximately -13%; P < 0.1) were lower in cold compared with control rats. In heart, overall, k(syn) (approximately +12%; P < 0.1) and k(deg) (approximately +22%; P < 0.05) were higher in cold compared with control rats; consequently, the absolute rates of synthesis (approximately +44%) and degradation (approximately +54%) were higher in cold compared with control rats (P < 0.05). Plasma triiodothyronine concentration was higher (P < 0.05) in cold compared with control rats. These data indicate that long-term cold acclimation in skeletal muscle is associated with the establishment of a new homeostasis in protein turnover with decreased protein mass and normal fractional rates of protein turnover. In heart, unlike skeletal muscle, rates of protein turnover did not appear to immediately return to normal as increased rates of protein turnover were observed beyond day 5. These data also indicate that increased rates of protein turnover in skeletal muscle are unlikely to contribute to increased metabolic heat production during cold acclimation.  相似文献   

13.
The effects of cold acclimation on the activity levels of cytochrome c oxidase, glutathione peroxidase and glutathione reductase in various tissues of the rat (Rattus norvegicus) were investigated. One group was individually housed at 4 +/- 1 degrees C and the other at 24 +/- 1 degrees C for 6 months. Chronic cold acclimation resulted in significantly (P < 0.05) increased cytochrome c oxidase activity levels in liver, kidney, heart, interscapular brown adipose tissue and gastrocnemius muscle. The activity of glutathione peroxidase was significantly (P < 0.05) elevated in liver, interscapular brown adipose tissue, lung and muscle, whereas glutathione reductase was only significantly (P < 0.05) elevated in interscapular brown adipose tissue as a result of chronic cold exposure. The results obtained are possibly indicative of a positive compensatory response against the increased production of oxygen derived radicals as a result of chronic cold exposure.  相似文献   

14.
We examined body core and skin temperatures and thermal comfort in young Japanese women suffering from unusual coldness (C, n = 6). They were selected by interview asking whether they often felt severe coldness even in an air-conditioned environment (20-26 degrees C) and compared with women not suffering from coldness (N, n = 6). Experiments were conducted twice for each subject: 120-min exposure at 23.5 degrees C or 29.5 degrees C after a 40-min baseline at 29.5 degrees C. Mean skin temperature decreased (P < 0.05) from 33.6 +/- 0.1 degrees C (mean +/- SE) to 31.1 +/- 0.1 degrees C and from 33.5 +/- 0.1 degrees C to 31.1 +/- 0.1 degrees C in C and N during the 23.5 degrees C exposure. Fingertip temperature in C decreased more than in N (P < 0.05; from 35.2 +/- 0.1 degrees C to 23.6 +/- 0.2 degrees C and from 35.5 +/- 0.1 degrees C to 25.6 +/- 0.6 degrees C). Those temperatures during the 29.5 degrees C exposure remained at the baseline levels. Rectal temperature during the 23.5 degrees C exposure was maintained at the baseline level in both groups (from 36.9 +/- 0.2 degrees C to 36.8 +/- 0.1 degrees C and 37.1 +/- 0.1 degrees C to 37.0 +/- 0.1 degrees C in C and N). The rating scores of cold discomfort for both the body and extremities were greater (P < 0.05) in C than in N. Thus the augmented thermal sensitivity of the body to cold and activated vasoconstriction of the extremities during cold exposure could be the mechanism for the severe coldness felt in C.  相似文献   

15.
Life-history theory assumes that animal life histories are a consequence of trade-offs between current activities and future reproductive performance or survival, because resource supply is limited. Empirical evidence for such trade-offs in the wild are common, yet investigations of the underlying mechanisms are rare. Life-history trade-offs may have both physiological and ecological mediated costs. One hypothesized physiological mechanism is that elevated energy metabolism may increase reactive oxygen species production, leading to somatic damage and thus compromising future survival. We investigated the impact of experimentally elevated energy expenditure on oxidative damage, protection and lifespan in short-tailed field voles (Microtus agrestis) maintained in captivity to remove any confounding ecological factor effects. Energy expenditure was elevated via lifelong cold exposure (7+/-2 degrees C), relative to siblings in the warm (22+/-2 degrees C). No treatment effect on cumulative mortality risk was observed, with negligible effects on oxidative stress and antioxidant protection. These data suggest that in captive animals physiologically mediated costs on life history do not result from increased energy expenditure and consequent elevations in oxidative stress and reduced survival.  相似文献   

16.
Activities of superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione-S-transferase (GST), glutathione reductase (GR), and glucose-6-phophate dehydrogenase (G6PDH) were measured in four tissues of goldfish, Carassius auratus L., over 1-12 h of high temperature (35 degrees C) exposure followed by 4 or 24 h of lower temperature (21 degrees C) recovery. SOD activity was strongly affected by heat shock, increasing 4-fold in brain, liver, and kidney, but was mainly reversed at recovery. In some tissues, activities of SOD, catalase, GPx, and G6PDH decreased significantly after 1 h heat shock exposure suggesting that thermal inactivation possibly occurred, but were renewed at further exposure. In many cases, 4 h of return to the initial temperature decreased enzyme activities. High correlation coefficients between SOD activities and levels of lipid peroxidation products suggest that these products might be involved in up-regulation of antioxidant defense. Several enzymes (SOD, GST, GR) responded to stress in coordinated manner.  相似文献   

17.
In a morphological study of brown adipose tissue (BAT) of rats returned after exposure to cold (+5 degrees C) to neutral temperature (+25 degrees C), striking periodic acid Schiff staining was observed, indicating substantial glycogen accumulation. Enzymatic analysis revealed that the glycogen content increased from the 4.05 +/- 0.51 (micromol glucose unit per gram of tissue, mean +/- SE) control value to 57.3 +/- 9.66 when the animals were returned to neutral temperature for 24 h after a 1-week cold period. Glycogen repletion was also observed in liver and skeletal muscle; however, the glycogen levels in these tissues never exceeded the control values. The accumulation of glycogen in the BAT started by the 3rd hour of replacement and peaked by the 24th hour. This glycogen was readily utilized during the next short cold exposure of the animals. The plasma leptin concentration was reduced at the cold temperature. The hexokinase II activity in the BAT increased to 29.3 +/- 1.46 vs the 11.8 +/- 1.06 control (mU/mg protein +/- SE) after a 1-week cold exposure and this level was maintained during the return to neutral temperature. The total glycogen synthetase (GStot) and the glycogen synthetase a activity also increased after a 1-week cold exposure and increased further during the replacement. The level of GStot reached 26.9 +/- 1.39 vs 9.54 +/- 1.43 control by the 24th hour of replacement. At the same time, the glycogen phosphorylase a activity declined during the replacement. The concentration of glucose 6-phosphate (an activator of GS) decreased in the cold but returned to normal during the replacement. These changes in the BAT are in favor of glycogen synthesis.  相似文献   

18.
Cold temperature generally induces an enhancement of oxidative capacities, a greater content of intracellular lipids, and a remodeling of lipids in biological membranes. These physiological responses may pose a heightened risk of lipid peroxidation (LPO), while warm temperature could result in greater risk of LPO since rates involving reactive oxygen species and LPO will be elevated. The current study examines responses of the glutathione system of antioxidant defense after temperature acclimation. We measured total glutathione (tGSH), and protein levels of GPx1, GPx4, and GST (cardiac and skeletal muscles), and enzymatic activity (skeletal muscle) of glutathione-dependent antioxidants (GPx, GPx4, and GST) in tissues from striped bass (Morone saxatilis) acclimated for six weeks to 7 °C or 25 °C. tGSH of cardiac muscle from cold-acclimated animals was 1.2-times higher than in warm-bodied counterparts, but unchanged with temperature acclimation in skeletal muscle. A second low molecular weight antioxidant, ascorbate was 1.4- and 1.5-times higher in cardiac and skeletal muscle, respectively in warm- than cold-acclimated animals. Despite 1.2-times higher oxidative capacities (as indicated by citrate synthase activity), in skeletal muscle from cold- versus warm-acclimated fish, levels and activities of antioxidant enzymes were similar between acclimation groups. Lipid peroxidation products (as indicated by TBARS), normalized to tissue wet weight, were more than 2-times higher in skeletal muscle from cold- than warm-acclimated animals, however, when normalized to phospholipid content there was no statistical difference between acclimation groups. Our results demonstrate that the physiological changes, associated with acclimation to low temperature in the eurythermal striped bass, are not accompanied by an enhanced antioxidant defense in the glutathione-dependent system.  相似文献   

19.
Interscapular brown adipose tissue (IBAT) hyperplasia involves a new metabolic and structural profile, resulting from acclimation of animals to a cold environment. Cold-induced changes of several antioxidative defense (AD) components in IBAT and their interrelationship with uncoupling protein 1 (UCP1), sympathetic innervation and apoptosis were studied using cold-acclimated adult rat males (4 +/- 1 degrees C, 45 days). Their age-matches were maintained at 22 +/- 1 degrees C serving as the controls. In cold-adapted rats, activities of CuZn- and Mn-superoxide dismutase (SOD) and apoptosis were reduced, while catalase (CAT), glutathione peroxidase (GSH-Px), glutathione S-transferase (GST) activities and glutathione (GSH) content were increased compared to the control. IBAT mass, protein content, plasma free fatty acid (FFA) concentration, sympathetic innervation and UCP1 level were significantly increased in cold-acclimated group compared to the corresponding control. These results suggest that decreased CuZn and MnSOD activities in IBAT represent an adaptive response due to UCP1-induced mitochondrial uncoupling. Additionally, intensive fatty acid oxidation led to an increased H(2)O(2) production which resulted in increased CAT, GSH-Px and GST activities and GSH level. Generally speaking, cold-induced changes of AD in the IBAT are closely connected with newly established metabolic profile in this tissue, thus making an important part of the entire tissue homeostasis including cell survival.  相似文献   

20.
Sarcoplasmic reticulum (SR) Ca2+-ATPase was purified from dog cardiac and rabbit skeletal muscle using Triton X-100 at optimal ratios of 0.5 for cardiac and 0.5 to 1.0 for skeletal SR. The yields of Ca2+-ATPase were 4 to 5 and 1 to 2.2 mg/100 mg of cardiac and skeletal SR protein, respectively. The enzyme activities were 547 +/- 67 mumol ADP/mg/h for cardiac and 1192 +/- 172 mumol ADP/mg/h for skeletal Ca2+-ATPase. Removal of excess Triton X-100 increased the enzyme activities to 719 +/- 70 and 1473 +/- 206 mumol ADP/mg/h, respectively. The residual content of Triton X-100 for cardiac and skeletal Ca2+-ATPase was 20 and 5 mol/mol of enzyme, respectively. Maximum levels of phosphoenzyme were 4.4 +/- 0.2 and 5.6 +/- 0.6 nmol/mg in each case. A single protein band of 100 kDa was obtained for each purified Ca2+-ATPase by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The preparations were stable at -80 degrees C for 5 months in the presence of 1 mM Ca2+. The phospholipid content of the purified enzyme was 2-fold greater than that of native cardiac and skeletal SR microsomes. Repeated washing of the purified enzyme preparation did not alter the phospholipid content or the specific activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号