首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent advances have provided insights into how the TCR interacts with MHC/peptide complexes and a rationale to predict optimal epitopes for MHC binding and T cell recognition. For example, peptides of nine residues are predicted to be optimal for binding to H2-L(d), although 8 mer epitopes have also been identified. It has been predicted that 8 mer and 9 mer length variant peptides bound to L(d) present identical epitopes to T cells. However, in contrast to this prediction, we demonstrate here that the 8 mer peptide p2Ca and its 9 mer length variant QL9, extended by an N-terminal glutamine, assume distinct conformations when bound to L(d). We generated self-L(d)-restricted CTL clones specific for p2Ca that recognize L(d)/QL9 poorly if at all. This result is in sharp contrast to what has been observed with L(d)-alloreactive T cells that possess a much higher affinity for L(d)/QL9 than for L(d)/p2Ca. Alanine substitutions of the N-terminal residues of the QL9 peptide rescue detection by these self-L(d)/p2Ca-specific T cells, but decrease recognition by the L(d)-alloreactive 2C T cell clone. In addition, 2C T cell recognition of the p2Ca peptide is affected by different alanine substitutions compared with 2C T cell recognition of the QL9 peptide. These data clearly demonstrate that the p2Ca and QL9 peptides assume distinct conformations when bound to L(d) and, furthermore, demonstrate that there is flexibility in peptide binding within the MHC class I cleft.  相似文献   

2.
Mouse T cell clone 2C recognizes two different major histocompatibility (MHC) ligands, the self MHC Kb and the allogeneic MHC Ld. Two distinct peptides, SIY (SIYRYYGL) and QL9 (QLSPFPFDL), act as strong and specific agonists when bound to Kb and Ld, respectively. To explore further the mechanisms involved in peptide potency and specificity, here we examined a collection of single amino acid peptide variants of SIY and QL9 for 1) T cell activity, 2) binding to their respective MHC, and 3) binding to the 2C T cell receptor (TCR) and high affinity TCR mutants. Characterization of SIY binding to MHC Kb revealed significant effects of three SIY residues that were clearly embedded within the Kb molecule. In contrast, QL9 binding to MHC Ld was influenced by the majority of peptide side chains, distributed across the entire length of the peptide. Binding of the SIY-Kb complex to the TCR involved three SIY residues that were pointed toward the TCR, whereas again the majority of QL9 residues influenced binding of TCRs, and thus the QL9 residues had impacts on both Ld and TCR binding. In general, the magnitude of T cell activity mediated by a peptide variant was influenced more by peptide binding to MHC than by binding the TCR, especially for higher affinity TCRs. Findings with both systems, but QL9-Ld in particular, suggest that many single-residue substitutions, introduced into peptides to improve their binding to MHC and thus their vaccine potential, could impair T cell reactivity due to their dual impact on TCR binding.  相似文献   

3.
4.
How a single T cell receptor recognizes both self and foreign MHC   总被引:5,自引:0,他引:5  
alphabeta T cell receptors (TCRs) can crossreact with both self- and foreign- major histocompatibility complex (MHC) proteins in an enigmatic phenomenon termed alloreactivity. Here we present the 2.35 A structure of the 2C TCR complexed with its foreign ligand H-2L(d)-QL9. Surprisingly, we find that this TCR utilizes a different strategy to engage the foreign pMHC in comparison to the manner in which it recognizes a self ligand H-2K(b)-dEV8. 2C engages both shared and polymorphic residues on L(d) and K(b), as well as the unrelated QL9 and dEV8 peptide antigens, in unique pair-wise contacts, resulting in greater structural complementarity with the L(d)-QL9 complex. In the structure of an engineered, high-affinity 2C TCR variant bound to H-2L(d)-QL9, the "wild-type" TCR-MHC binding orientation persists despite modified TCR-CDR3alpha interactions with peptide. Thus, a single TCR recognizes two globally similar, but distinct ligands by divergent mechanisms, indicating that receptor-ligand crossreactivity can occur in the absence of molecular mimicry.  相似文献   

5.
A CTL clone that recognizes autologous tumor cells was previously isolated from the blood of a head-and-neck cancer patient. The Ag was identified as peptide FPSDSWCYF presented by autologous HLA-B*3503 molecules. This peptide was encoded by a mutated CASP-8 gene, which is implicated in the triggering of apoptosis. Here, we show that this CTL clone, which expresses a single TCR, also recognizes two unrelated peptides on allogeneic HLA-B*3501 molecules. One peptide, HIPDVITY, is encoded by squalene synthase, and the other one, QFADVIVLF, is encoded by 2-hydroxyphytanoyl-CoA lyase. Both genes are expressed ubiquitously. These antigenic peptides are processed and presented by HLA-B*3501 cells. The two HLA-B35 alleles are closely related. Our results might reinforce the notion that the recognition of allogeneic HLA molecules depends on the presence in their groove of a limited number of peptides processed from ubiquitous proteins.  相似文献   

6.
T cells are known to cross-react with diverse peptide MHC Ags through their alphabeta TCR. To explore the basis of such cross-reactivity, we examined the 2C TCR that recognizes two structurally distinct ligands, SIY-K(b) and alloantigen QL9-L(d). In this study we characterized the cross-reactivity of several high-affinity 2C TCR variants that contained mutations only in the CDR3alpha loop. Two of the TCR lost their ability to cross-react with the reciprocal ligand (SIY-K(b)), whereas another TCR (m67) maintained reactivity with both ligands. Crystal structures of four of the TCRs in complex with QL9-L(d) showed that CDR1, CDR2, and CDR3beta conformations and docking orientations were remarkably similar. Although the CDR3alpha loop of TCR m67 conferred a 2000-fold higher affinity for SIY-K(b), the TCR maintained the same docking angle on QL9-L(d) as the 2C TCR. Thus, CDR3alpha dictated the affinity and level of cross-reactivity, yet it did so without affecting the conserved docking orientation.  相似文献   

7.
CTL recognize peptides that derive from viral protein Ags by proteolytic processing and are presented by MHC class I molecules. In this study we tested whether coexpression of viral Ags in the same cell leads to competition between them. To this end, two L(d)-restricted epitopes derived from HIV-1 envelope gp160 (ENV) and from CMV pp89 phosphoprotein were coexpressed. HIV ENV strain IIIB, but not MN variant, impaired recognition by specific CTL of CMV pp89 epitope 9pp89. Susceptibility to inhibition after ENV coexpression was inversely related to the amount of antigenic 9pp89 peptide processed from different antigenic constructs. In line with it, competition decreased the yield of naturally processed antigenic 9pp89 peptide bound to MHC class I molecules in coinfected cells. Also, point mutants of the presenting MHC class I molecule differed in their competition pattern. Collectively, the data imply that competition operates at the step of MHC-peptide complex assembly or stabilization. We conclude that, although not the rule, in certain combinations there is interference between different Ags expressed in the same cell and presented by the same MHC class I allele. These studies have implications for vaccine development and for understanding immunodominance.  相似文献   

8.
Human CTL have been isolated that show self-restricted recognition of autologous lymphoblastoid cell lines and allorecognition. The lymphoblastoid cell line ligand most likely used a peptide that is expressed in EBV-bearing cells when the virus enters the lytic cycle. This peptide is presented to CD8+ CTL by HLA-Cw7 molecules. The allogeneic ligand recognized on non-EBV-infected cells is composed of a class I glycoprotein and a naturally selected self-peptide. In previous studies we demonstrated that this ligand is determined by two MHC-linked genes: one gene encodes the allogeneic class I molecule whereas the other controls the self-peptide. Despite the use of different peptides and different class I molecules, seemingly equivalent structures are formed that enable these two ligands to function as antigenic mimics of each other. CTL with the same patterns of dual specificity could be isolated from four unrelated donors, indicating that HLA-Cw7 is frequently involved in self-restricted recognition of EBV-harboring cells. Such CTL could help not only to contain lytic virus during a primary infection but also may be maintained life-long to eliminate cells in which reactivated virus appears.  相似文献   

9.
The lungs are a major organ site of cytomegalovirus (CMV) infection, pathogenesis, and latency. Interstitial CMV pneumonia represents a critical manifestation of CMV disease, in particular in recipients of bone marrow transplantation (BMT). We have employed a murine model for studying the immune response to CMV in the lungs in the specific scenario of immune reconstitution after syngeneic BMT. Control of pulmonary infection was associated with a vigorous infiltration of the lungs, which was characterized by a preferential recruitment and massive expansion of the CD8 subset of α/β T cells. The infiltrate provided a microenvironment in which the CD8 T cells differentiated into mature effector cells, that is, into functionally active cytolytic T lymphocytes (CTL). This gave us the opportunity for an ex vivo testing of the antigen specificities of CTL present at a relevant organ site of viral pathogenesis. The contribution of the previously identified immediate-early 1 (IE1) nonapeptide of murine CMV was evaluated by comparison with the CD3-redirected cytolytic activity used as a measure of the overall CTL response in the lungs. The IE1 peptide was detected by pulmonary CTL, but it accounted for a minor part of the response. Interestingly, no additional viral or virus-induced antigenic peptides were detectable among naturally processed peptides derived from infected lungs, even though infected fibroblasts were recognized in a major histocompatibility complex-restricted manner. We conclude that the antiviral pulmonary immune response is a collaborative function that involves many antigenic peptides, among which the IE1 peptide is immunodominant in a relative sense.  相似文献   

10.
Signaling through the TCR as well as engagement of costimulatory molecules are required for efficient T cell activation and progression into differentiated effector cells. The beta2 integrin LFA-1 (CD11a/CD18) has been implicated in TCR costimulation as well as in cell-cell adhesion function, but its exact role is still ambiguous. The present study focuses on the requirement for LFA-1 in CD8+ T cell activation and effector function using LFA-1-deficient cells expressing the 2C transgenic TCR as a model system. The lack of LFA-1 expression in 2C T cells resulted in severely diminished proliferative response toward allogeneic BALB/c splenocytes. Increase in TCR signaling alone by pulsing stimulators with high affinity peptides, p2Ca or QL9, had minimal effects in restoring proliferation. Addition of exogenous IL-2, however, enhanced the effect of peptide pulsing on proliferation of LFA-1-deficient 2C T cells. LFA-1-deficient 2C CTLs generated from alloantigen stimulation exhibited a defective cytotoxic activity when tested on a variety of target cells. Cytolysis could be improved, but not fully rectified by peptide pulsing of target cells. Thus, in the 2C TCR model, LFA-1 has a requisite role for optimal CD8+ T cell activation and effector function, which cannot be overcome by increasing peptide/MHC density on either the APCs or target cells, respectively.  相似文献   

11.
Immunoglobulin E (IgE) plays a central role in IgE-mediated immediate type hypersensitivity. Since production of IgE depends on Th2, efforts to block IgE production and control allergic reactions include tolerization of Th2 or deviating development of Th2. We hypothesized that cytotoxic T lymphocytes targeting natural IgE peptides/MHC I complexes can eliminate IgE-producing cells and inhibit centrally IgE production. CTL to self-IgE peptides were elicited in mice immunized with nonameric p109-117, p113-121, and p103-141 (CHepsilon2 domain), which encompass both peptides with an OVA helper peptide (OVAp restricted for H-2d/b) in liposomes and presented by dendritic cells (DC). CTL from BALB/c lysed IgE peptide-pulsed P815 target as well as IgE-producing 26.82 hybridomas (H-2d). Natural tolerance to self-IgE peptides was tested in IgE sufficient (IgE +/+) as well as IgE-deficient (IgE -/-) 129/SvEv mice (H-2b). Comparable magnitude of CTL responses was observed in both strains immunized with p109-117 or p103-141 concomitantly with CD4 T-cell costimulation. CTL from 129/SvEv lysed not only IgE peptide-pulsed EL-4 but also IgE-producing B4 hybridomas (H-2b). This observation strongly suggests a correspondence of epitope of immunogenic peptide to that of physiologically processed IgE peptides presented on IgE-producing cells. Moreover, CTL were generated in 129/SvEv, immunized with the recombinant antigenized antibody in liposomes encompassing p107-123, p109-117, and p113-121 expressed in CDR3 of VH62/human gamma1. Polyclonal IgE production was inhibited by coincubation with MHC I-restricted CTL in vitro. Furthermore, antigen-specific IgE responses were inhibited in mice, immunized with p109-117 and p103-141 while IgG responses were not suppressed. Since IgE peptide sequences of CHepsilon2 are ubiquitous to all murine IgE heavy chain, peptides made as such can serve as a universal IgE vaccine to prevent allergy for a myriad of allergens in rodents. This observation suggests that similar human IgE peptides should be identified and employed to downregulate human IgE production.  相似文献   

12.
Studies to date assessing HIV escape from CTL in vivo have yielded conflicting results. Previous studies have demonstrated that simian immunodeficiency virus of macaques (SIVmac)-infected rhesus monkeys expressing the MHC class I allele Mamu-A*01 reproducibly develop a gag-specific CTL response limited to a 9-amino acid epitope of the SIVmac gag protein (residues 182-190 within peptide 11C). To determine whether CTL have a role in selecting for AIDS virus mutants, we examined mutations in SIVmac proviral DNA encoding this gag CTL epitope in PBL of infected rhesus monkeys. Three Mamu-A*01+ rhesus monkeys were infected with SIVmac and assessed for gag- and peptide 11C-specific CTL responses. This specific CTL response was maintained in two monkeys, but lost in the third animal 2 yr after infection. The generation of proviral gag mutations was then determined by sequencing 500-bp proviral fragments amplified from fresh PBL obtained from the monkeys more than 2.5 yr after infection. Although numerous point mutations were characterized in 131 polymerase chain reaction-generated clones of SIVmac gag, only four mutations within the gag CTL epitope-coding region of the genome were identified. Comparison of synonymous and nonsynonymous nucleotide substitutions in the regions encoding peptide 11C (p11C) and the flanking gag protein indicated a lack of selective pressure for viral mutations in the CTL epitope coding region. Interestingly, a predominant gag mutant encoding a single amino acid change in p11C was found in a monkey which lost its CTL activity. However, even in this setting there was no evidence for selection of mutations in the CTL epitope coding region when compared with the flanking region. Furthermore, synthetic peptides corresponding to all naturally occurring variants in the gag epitope-coding region were recognized by cloned and bulk cultured effector cells of the infected monkeys with persistent CTL. These results indicate that SIVmac gag- and p11C-specific CTL do not select for mutations in the immunodominant epitope-coding region and that the naturally occurring mutants do not appear to escape CTL recognition.  相似文献   

13.
To understand the mechanisms that govern T cell receptor (TCR)-peptide MHC (pMHC) binding and the role that different regions of the TCR play in affinity and antigen specificity, we have studied the TCR from T cell clone 2C. High-affinity mutants of the 2C TCR that bind QL9-L(d) as a strong agonist were generated previously by site-directed mutagenesis of complementarity determining regions (CDRs) 1beta, 2alpha, 3alpha, or 3beta. We performed isothermal titration calorimetry to assess whether they use similar thermodynamic mechanisms to achieve high affinity for QL9-L(d). Four of the five TCRs examined bound to QL9-L(d) in an enthalpically driven, entropically unfavorable manner. In contrast, the high-affinity CDR1beta mutant resembled the wild-type 2C TCR interaction, with favorable entropy. To assess fine specificity, we measured the binding and kinetics of these mutants for both QL9-L(d) and a single amino acid peptide variant of QL9, called QL9-Y5-L(d). While 2C and most of the mutants had equal or higher affinity for the Y5 variant than for QL9, mutant CDR1beta exhibited 8-fold lower affinity for Y5 compared to QL9. To examine possible structural correlates of the thermodynamic and fine specificity signatures of the TCRs, the structure of unliganded QL9-L(d) was solved and compared to structures of the 2C TCR/QL9-L(d) complex and three high-affinity TCR/QL9-L(d) complexes. Our findings show that the QL9-L(d) complex does not undergo major conformational changes upon binding. Thus, subtle changes in individual CDRs account for the diverse thermodynamic and kinetic binding mechanisms and for the different peptide fine specificities.  相似文献   

14.
HLA-B15 peptide ligands are preferentially anchored at their C termini.   总被引:1,自引:0,他引:1  
Therapies to elicit protective CTL require the selection of pathogen- and tumor-derived peptide ligands for presentation by MHC class I molecules. Edman sequencing of class I peptide pools generates "motifs" that indicate that nonameric ligands bearing conserved position 2 (P2) and P9 anchors provide the optimal search parameters for selecting immunogenic epitopes. To determine how well a motif represents its individual constituents, we used a hollow-fiber peptide production scheme followed by the mapping of endogenously processed class I peptide ligands through reverse-phase HPLC and mass spectrometry. Systematically mapping and characterizing ligands from B*1508, B*1501, B*1503, and B*1510 demonstrate that the peptides bound by these B15 allotypes i) vary in length from 7 to 12 residues, and ii) are more conserved at their C termini than their N-proximal P2 anchors. Comparative peptide mapping of these B15 allotypes further pinpoints endogenously processed ligands that bind to the allotypes B*1508, B*1501, and B*1503, but not B*1510. Overlapping peptide ligands are successful in binding to B*1501, B*1503, and B*1508 because these B15 allotypes share identical C-terminal anchoring pockets whereas B*1510 is divergent in the C-terminal pocket. Therefore, endogenous peptide loading into the B15 allotypes requires that a conserved C terminus be anchored in the appropriate specificity pocket while N-proximal anchors are more flexible in their location and sequence. Queries for overlapping and allele-specific peptide ligands may thus be contingent on a conserved C-terminal anchor.  相似文献   

15.
 The tumour-suppressor gene p53 is pivotal in the regulation of apoptosis, and point mutations within p53 are the commonest genetic alterations in human cancers. Cytotoxic T lymphocytes (CTL) recognise peptide-MHC complexes on the surface of tumour cells and bring about lysis. Therefore, p53-derived peptides are potential candidates for immunisation strategies designed to induce antitumour CTL in patients. Conformational changes in the p53 protein, generated as a result of point mutations, frequently expose the 240 epitope, RHSVV (amino acids 212–217), which may be processed differently from the wild-type protein resulting in an altered MHC-associated peptide repertoire recognised by tumour-specific CTL. In this study 42 peptides (37 overlapping nonameric peptides, from amino acids 193–237 and peptides 186–194, 187–197, 188–197, 263–272, 264–272, possessing binding motifs for HLA-A2) derived from the wild-type p53 protein sequence were assayed for their ability to stabilise HLA-A2 molecules in MHC class I stabilisation assays. Of the peptides tested, 24 stabilised HLA-A2 molecules with high affinity (fluorescence ratio>1.5) at 26 °C, and five (187–197, 193–200, 217–224, 263–272 and 264–272) also stabilised the complexes at 37 °C. Peptides 188–197, 196–203 and 217–225 have not previously been identified as binders of HLA-A2 molecules and, of these, peptide 217–225 stabilised HLA-A2 molecules with the highest fluorescence ratio. Peptide 217–225 was chosen to generate HLA-A2-restricted CTL in vitro; peptide 264–272 was used as a positive control. The two primary CTL thus generated (CTL-217 using peptide 217–225; and CTL-264 using peptide 264–272) were capable of specifically killing peptide-pulsed T2 or JY cells. In order to determine whether these peptides were endogenously processed and to test the hypothesis that mutants expressing different protein conformations would generate an alternative peptide repertoire at the cell surface, a panel of target cells was generated. HLA-A2+ SaOs-2 cells were transfected with p53 cDNA containing point mutations at either position 175 (R → H) or 273 (R → H) (SaOs-2/175 and SaOs-2/273). Two HLA-A2-negative cell lines, A431 and SKBr3, naturally expressing p53 mutations at positions 273 and 175 respectively, were transfected with a cDNA encoding HLA-A2. The results showed that primary CTL generated in response to both peptides were capable of killing SaOs-2/175 and SKBr3-A2 cells, which possess the same mutation, but not SaOs-2/273, A431-A2 or SKBr3 cells transfected with control vector. This suggests that these peptides are presented on the surface of SaOs-2/175 and SKBr3-A2 cells in a conformation-dependent manner and represent potentially useful target peptides for immunotherapy. Received: 23 March 2000 / Accepted: 22 June 2000  相似文献   

16.
The self-restricted T cell repertoire exhibits a high frequency of alloreactivity. Because these alloreactive T cells are derived from the pool of cells selected on several different self MHC alleles, it is unknown how development of the alloantigenic repertoire is influenced by homology between a self MHC allele and an alloantigen. To address this, we used the 2C transgenic TCR that is selected by K(b), is alloreactive for L(d), and cross-reacts with L(q). L(q) is highly homologous to L(d) and binds several of the same peptide ligands, including p2Ca, the peptide recognized by 2C. We find that L(d)/p2Ca is a high avidity agonist ligand, whereas L(q)/p2Ca is a low avidity agonist ligand for 2C T cells. When mice transgenic for the 2C TCR are bred to L(q)-expressing mice, 2C(+) T cells develop; however, they express lower levels of either the 2C TCR or CD8 and require a higher L(d)/p2Ca ligand density to be activated than 2C(+) T cells selected by K(b). Furthermore, the 2C T cells selected in the presence of L(q) fail to detect L(q)/p2Ca complexes even at high ligand density. Thus, despite possessing the identical TCR, there is a functional avidity difference between 2C(+) T cells selected in the presence of L(q) vs K(b). These data provide evidence that homology between the selecting ligand and an alloantigen can influence the avidity of the T cell repertoire for the alloantigen, and suggest that thymic selection can fine tune T cell avidity independent of intrinsic TCR affinity.  相似文献   

17.
P815 (H-2d) target cells incubated with synthetic peptides corresponding to region 170-182 of HLA or to region 141-161 of influenza nucleoprotein (NP) are lysed by DBA/2 derived cytolytic T cells (CTL) specific for HLA or by BALB/c derived CTL-specific for NP, respectively. Both peptide Ag are recognized in the context of Kd. We show herein that these unrelated, nonhomologous peptides clearly compete reciprocally for recognition by the appropriate Kd restricted CTL. In contrast, different NP peptides that are recognized by other CTL restricted by HLA-B37, H-2-Db or KK, either failed to compete or were much less efficient as competitors than NP peptides recognized in the context of Kd. The efficiency of a peptide as a competitor correlated with its potency as an Ag. The most efficient competitor was a variant peptide of NP 147-158 with R156 deleted, which had been previously shown to be 1,000 times more efficient as an Ag than its natural homolog. Our results suggest that peptides recognized by CTL in the context of the same MHC class I restriction element may bind to the same or interdependent site(s) on the restriction molecule.  相似文献   

18.
T-cell receptor (TCR) internalization occurs via TCR recognition of the peptide/MHC molecule complex on antigen presenting cell (APC). In this study, the requirements for inducing the internalization of TCR molecules on Ld major histocompatibility complex (MHC) class I-restricted T-cells were investigated with 2C cytotoxic T-lymphocyte (CTL) clones with defined peptides as the antigen. To evaluate the function of the transmembrane region of TCR alphabeta chains in TCR internalization, we generated T-cell transfectants expressing the wild type and glycosylphosphatidyl inositol (GPI)-linked form of 2C TCR. Among all peptides forming proper ligands to 2C TCR, only the Qp2Ca peptide induced TCR internalization, which was known to have the highest affinity to both Ld MHC class I molecules and TCR in association with Ld molecules. Such TCR internalization was not observed in cells expressing the GPI-linked form of 2C TCR. Furthermore, the expression of CD8 coreceptor and Thy-1 accessory molecules were both not required for Qp2Ca-induced TCR internalization, and these molecules did not accompany TCR internalization. Altogether, these results suggest that TCR internalization on CTL is not a prerequisite for CTL function.  相似文献   

19.
Two strategies were aimed at identifying immunogenically optimized peptides for the potential use in the formulation of an effective prophylactic or therapeutic HIV-1 vaccine. Three CTL epitopes were investigated: Gag p24(19-27) TV9, Gag p17(77-85) SL9, and RT(309-317) IV9. The first strategy derives from the hypothesis that a number of rare mutant CTL epitopes of HIV-1 may be more immunogenic than the common ones. As such, these rare mutant sequences might be highly effective in generating cross reactive anti-HIV-1 CTL responses against a range of mutant sequences. As anticipated, several rare mutant peptide sequences were identified that generated strong CTL responses against both the consensus sequences and several naturally occurring mutants in human PBL cultures primed ex vivo and in HLA-A2 transgenic mice immunized in vivo. Finally, to reach beyond the sequence diversity of the "natural" library of mutated sequences, a synthetic combinatorial peptide library was screened with a TV9 specific T-cell line; this resulted in the identification of an immunogenically optimized mimic peptide sequence that provoked highly effective CTL immune responses against TV9 and mutants. Sequence homologies between the natural mutants and synthetic mimic may provide insight into key contact positions in the MHC/TCR/peptide complex.  相似文献   

20.
Prostate-specific antigen (PSA) is a potentially useful antigen for targeted T-cell immunotherapy of prostate cancer (CaP). Our laboratory has identified a synthetic nonamer peptide (PSA 146-154) homologue of PSA, which binds to the prevalent human leukocyte antigen, HLA-A2, and elicits specific cytotoxic T-lymphocyte (CTL) responses from normal individuals of the HLA-A2 phenotype. In the present study, we report on the induction of CTL from peripheral blood mononuclear cells (PBMC) of patients with hormone-refractory CaP, which exhibit the same specificity. T-cell lines were established from two patients by stimulation of PBMC with PSA 146-154 peptide in vitro. The T-cell lines exhibited specific cytolytic activity against T2 cells pulsed with PSA 146-154 peptide, but not a control HLA-A2 binding peptide (HIV-RT 476-484) via chromium release assay (CRA). The T-cell lines also showed PSA 146-154 peptide-specific IL-4 responses, but no detectable interferon-gamma (IFN-gamma) responses via enzyme-linked immuno-spot assays. Magnetic immuno-selection studies of one of the T-cell lines demonstrated that both cytolytic and interleukin-4 (IL-4) responses were mediated by CD8(+), but not by CD4(+) T cells. This Tc2 line was further characterized for the ability to recognize endogenously processed PSA epitopes. The line specifically secreted IL-4 in response to HLA-A2(+) target cells transfected to express PSA and specifically lysed the PSA(+) target cells, but not control transfected cells. The results indicate that the PSA 146-154 peptide emulates a naturally processed and presented peptide epitope of PSA that is within the T-cell repertoire of HLA-A2(+)patients with CaP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号