首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ASCAN is a new algorithm for automatic sequence-specific NMR assignment of amino acid side-chains in proteins, which uses as input the primary structure of the protein, chemical shift lists of (1)H(N), (15)N, (13)C(alpha), (13)C(beta) and possibly (1)H(alpha) from the previous polypeptide backbone assignment, and one or several 3D (13)C- or (15)N-resolved [(1)H,(1)H]-NOESY spectra. ASCAN has also been laid out for the use of TOCSY-type data sets as supplementary input. The program assigns new resonances based on comparison of the NMR signals expected from the chemical structure with the experimentally observed NOESY peak patterns. The core parts of the algorithm are a procedure for generating expected peak positions, which is based on variable combinations of assigned and unassigned resonances that arise for the different amino acid types during the assignment procedure, and a corresponding set of acceptance criteria for assignments based on the NMR experiments used. Expected patterns of NOESY cross peaks involving unassigned resonances are generated using the list of previously assigned resonances, and tentative chemical shift values for the unassigned signals taken from the BMRB statistics for globular proteins. Use of this approach with the 101-amino acid residue protein FimD(25-125) resulted in 84% of the hydrogen atoms and their covalently bound heavy atoms being assigned with a correctness rate of 90%. Use of these side-chain assignments as input for automated NOE assignment and structure calculation with the ATNOS/CANDID/DYANA program suite yielded structure bundles of comparable quality, in terms of precision and accuracy of the atomic coordinates, as those of a reference structure determined with interactive assignment procedures. A rationale for the high quality of the ASCAN-based structure determination results from an analysis of the distribution of the assigned side chains, which revealed near-complete assignments in the core of the protein, with most of the incompletely assigned residues located at or near the protein surface.  相似文献   

2.
NMR signal assignments for DNA oligomers have been performed by the well-established sequential assignment procedures based on NOESY and COSY. The H4'/H5'/H5' resonance region is congested and difficult to analyze without the use of isotope-labeled DNA oligomers. Here a DNA dodecamer constructed with 2'-deoxy[5'-(13)C]ribonucleotides, 5'-d(*C*G*C*G*A*A*T*T*C*G*CG)-3' (*N = [5'-(13)C]Nucleotide), was prepared in an effort to analyze the H4'/H5'/H5' resonance region by 2D 1H-13C HMQC-NOESY. In the C5' and H1' resonance region, weak and strong cross peaks for C5'(i)-H1'(i) and C5'(i)-H1'(i-1), respectively, were found, thus enabling the sequential assignment within this region. A similar sequential assignment route was found between C5' and H2'. Proton pair distances evaluated from the canonical B-DNA as well as A-DNA indicated that these sequential-assignment routes on a 2D 1H-13C HMQC-NOESY spectrum work for most nucleic acid stem regions.  相似文献   

3.
The hnRNP C1 and C2 proteins are abundant nuclear proteins that bind avidly to heterogeneous nuclear RNAs (hnRNAs) and appear to be involved with pre-mRNA processing. The RNA-binding activity of the hnRNP C proteins is contained in the amino-terminal 94 amino acid RNA-binding domain (RBD) that is identical for these two proteins. We have obtained the 1H, 13C, and 15N NMR assignments for the RBD of the human hnRNP C proteins. The assignment process was facilitated by extensive utilization of three- and four-dimensional heteronuclear-edited spectra. Sequential assignments of the backbone resonances were made using a combination of 15N-edited 3D NOESY-HMQC, 3D TOCSY-HMQC, and 3D TOCSY-NOESY-HSQC as well as 3D HNCA, HNCO, and HCACO spectra. Side-chain resonances were assigned using 3D HCCH-COSY and 3D HCH-TOCSY spectra. Four-dimensional 13C/13C-edited NOESY and 13C/15N-edited NOESY experiments were used to unambigously resolve NOEs. The overall global folding pattern was established by calculating a set of preliminary structures using constraints derived from the sequential NOEs and a small number of long-range NOEs. The beta alpha beta-beta alpha beta domain structure exhibits an antiparallel beta-sheet with the conserved RNP 1 and RNP 2 sequences [Dreyfuss et al. (1988) Trends Biochem. Sci. 13, 86-91] located adjacent to one another as the two inner strands of the beta-sheet.  相似文献   

4.
RELAX-JT2 is an extension of RELAX, a program for the simulation of 1H 2D NOESY spectra and (15)N or (13)C edited 3D NOESY-HSQC spectra of biological macromolecules. In addition to the already existing NOE-simulation it allows the proper simulation of line shapes by the integrated calculation of T(2) times and multiplet structures caused by J-couplings. Additionally the effects of relaxation mediated by chemical shift anisotropy are taken into account. The new routines have been implemented in the program AUREMOL, which aims at the automated NMR structure determination of proteins in solution. For a manual or automatic assignment of experimental spectra that is based on the comparison with the corresponding simulated spectra, the additional line shape information now available is a valuable aid. The new features have been successfully tested with the histidine-containing phosphocarrier protein HPr from Staphylococcus carnosus.  相似文献   

5.
The assignment of the aliphatic 1H and 13C resonances of IL-1 beta, a protein of 153 residues and molecular mass 17.4 kDa, is presented by use of a number of novel three-dimensional (3D) heteronuclear NMR experiments which rely on large heteronuclear one-bond J couplings to transfer magnetization and establish through-bond connectivities. These 3D NMR experiments circumvent problems traditionally associated with the application of conventional 2D 1H-1H correlation experiments to proteins of this size, in particular the extensive chemical shift overlap which precludes the interpretation of the spectra and the reduced sensitivity arising from 1H line widths that are often significantly larger than the 1H-1H J couplings. The assignment proceeds in two stages. In the first step the 13C alpha chemical shifts are correlated with the NH and 15N chemical shifts by a 3D triple-resonance NH-15N-13C alpha (HNCA) correlation experiment which reveals both intraresidue NH(i)-15N(i)-13C alpha (i) and some weaker interresidue NH(i)-15N(i)-C alpha (i-1) correlations, the former via intraresidue one-bond 1JNC alpha and the latter via interresidue two-bond 2JNC alpha couplings. As the NH, 15N, and C alpha H chemical shifts had previously been sequentially assigned by 3D 1H Hartmann-Hahn 15N-1H multiple quantum coherence (3D HOHAHA-HMQC) and 3D heteronuclear 1H nuclear Overhauser 15N-1H multiple quantum coherence (3D NOESY-HMQC) spectroscopy [Driscoll, P.C., Clore, G.M., Marion, D., Wingfield, P.T., & Gronenborn, A.M. (1990) Biochemistry 29, 3542-3556], the 3D triple-resonance HNCA correlation experiment permits the sequence-specific assignments of 13C alpha chemical shifts in a straightforward manner. The second step involves the identification of side-chain spin systems by 3D 1H-13C-13C-1H correlated (HCCH-COSY) and 3D 1H-13C-13C-1H total correlated (HCCH-TOCSY) spectroscopy, the latter making use of isotropic mixing of 13C magnetization to obtain relayed connectivities along the side chains. Extensive cross-checks are provided in the assignment procedure by examination of the connectivities between 1H resonances at all the corresponding 13C shifts of the directly bonded 13C nuclei. In this manner, we were able to obtain complete 1H and 13C side-chain assignments for all residues, with the exception of 4 (out of a total of 15) lysine residues for which partial assignments were obtained. The 3D heteronuclear correlation experiments described are highly sensitive, and the required set of three 3D spectra was recorded in only 1 week of measurement time on a single uniformly 15N/13C-labeled 1.7 mM sample of interleukin-1 beta.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The NOAH/DIAMOD suite uses feedback filtering and self-correcting distance geometry to generate 3D structures from unassigned NOESY spectra. In this study we determined the minimum set of experiments needed to generate a high quality structure bundle. Different combinations of 3D 15N-edited, 13C-edited HSQC-NOESY and 2D homonuclear 1H-1H NOESY spectra of the 77 amino acid protein, myeloid progenitor inhibitory factor-1 (MPIF-1) were used as input for NOAH/DIAMOD calculations. The quality of the assignments of NOESY cross peaks and the accuracy of the automatically generated 3D structures were compared to those obtained with a conventional manual procedure. Combining data from two types of experiments synergistically increased the number of peaks assigned unambiguously in both individual spectra. As a general trend for the accuracy of the structures we observed structural variations in the backbone fold of the final structures of about 2 Å for single spectral data, of 1 Å to 1.5 Å for double spectral data, and of 0.6 Å for triple spectral data sets. The quality of the assignments and 3D structures from the optimal data using all three spectra were similar to those obtained from traditional assignment methods with structural variations within the bundle of 0.6 Å and 1.3 Å for backbone and heavy atoms, respectively. Almost all constraints (97%) of the automatic NOESY cross peak assignments were cross compatible with the structures from the conventional manual assignment procedure, and an even larger proportion (99%) of the manually derived constraints were compatible with the automatically determined 3D structures. The two mean structures determined by both methods differed only by 1.3 Å rmsd for the backbone atoms in the well-defined regions of the protein. Thus NOAD/DIAMOD analysis of spectra from labeled proteins provides a reliable method for high throughput analysis of genomic targets.  相似文献   

7.
Nearly complete assignment of the aliphatic 1H and 13C resonances of the IIAglc domain of Bacillus subtilis has been achieved using a combination of double- and triple-resonance three-dimensional (3D) NMR experiments. A constant-time 3D triple-resonance HCA(CO)N experiment, which correlates the 1H alpha and 13C alpha chemical shifts of one residue with the amide 15N chemical shift of the following residue, was used to obtain sequence-specific assignments of the 13C alpha resonances. The 1H alpha and amide 15N chemical shifts had been sequentially assigned previously using principally 3D 1H-15N NOESY-HMQC and TOCSY-HMQC experiments [Fairbrother, W. J., Cavanagh, J., Dyson, H. J., Palmer, A. G., III, Sutrina, S. L., Reizer, J., Saier, M. H., Jr., & Wright, P. E. (1991) Biochemistry 30, 6896-6907]. The side-chain spin systems were identified using 3D HCCH-COSY and HCCH-TOCSY spectra and were assigned sequentially on the basis of their 1H alpha and 13C alpha chemical shifts. The 3D HCCH and HCA(CO)N experiments rely on large heteronuclear one-bond J couplings for coherence transfers and therefore offer a considerable advantage over conventional 1H-1H correlation experiments that rely on 1H-1H 3J couplings, which, for proteins the size of IIAglc (17.4 kDa), may be significantly smaller than the 1H line widths. The assignments reported herein are essential for the determination of the high-resolution solution structure of the IIAglc domain of B. subtilis using 3D and 4D heteronuclear edited NOESY experiments; these assignments have been used to analyze 3D 1H-15N NOESY-HMQC and 1H-13C NOESY-HSQC spectra and calculate a low-resolution structure [Fairbrother, W. J., Gippert, G. P., Reizer, J., Saier, M. H., Jr., & Wright, P. E. (1992) FEBS Lett. 296, 148-152].  相似文献   

8.
Nearly complete 1H, 13C and15 N NMR assignments have been obtained for a doubly labeled 14-base pair DNA duplex in solution both in the free state and complexed with the uniformly 15N-labeled Antennapedia homeodomain. The DNA was either fully 13C,15N-labeled or contained uniformly 13C, 15N-labeled nucleotides only at those positions which form the protein–DNA interface in the previously determined NMR solution structure of the Antennapedia homeodomain–DNA complex. The resonance assignments were obtained in three steps: (i) identification of the deoxyribose spin systems via scalar couplings using 2D and 3D HCCH-COSY and soft-relayed HCCH-COSY; (ii) sequential assignment of the nucleotides via1 H–1H NOEs observed in 3D13 C-resolved NOESY; and (iii) assignment of the imino and amino groups via 1H–1H NOEs and15 N–1H correlation spectroscopy. The assignment of the duplex in the 17 kDa protein–DNA complex was greatly facilitated by the fact that 1H signals of the protein were filtered out in 13C-resolved spectroscopy and by the excellent carbon chemical shift dispersion of the DNA duplex. Comparison of corresponding 13C chemical shifts of the free and the protein-bound DNA indicates conformational changes in the DNA upon complex formation.  相似文献   

9.
Mars - robust automatic backbone assignment of proteins   总被引:1,自引:0,他引:1  
MARS a program for robust automatic backbone assignment of (13)C/(15)N labeled proteins is presented. MARS does not require tight thresholds for establishing sequential connectivity or detailed adjustment of these thresholds and it can work with a wide variety of NMR experiments. Using only (13)C(alpha)/(13)C(beta) connectivity information, MARS allows automatic, error-free assignment of 96% of the 370-residue maltose-binding protein. MARS can successfully be used when data are missing for a substantial portion of residues or for proteins with very high chemical shift degeneracy such as partially or fully unfolded proteins. Other sources of information, such as residue specific information or known assignments from a homologues protein, can be included into the assignment process. MARS exports its result in SPARKY format. This allows visual validation and integration of automated and manual assignment.  相似文献   

10.
The solution structure of the catalytic fragment of human fibroblast collagenase (MMP-1) complexed with a sulfonamide derivative of a hydroxamic acid compound (CGS-27023A) has been determined using two-dimensional and three-dimensional heteronuclear NMR spectroscopy. The solution structure of the complex was calculated by means of hybrid distance geometry-simulated annealing using a combination of experimental NMR restraints obtained from the previous refinement of the inhibitor-free MMP-1 (1) and recent restraints for the MMP-1:CGS-27023A complex. The hydroxamic acid moiety of CGS-27023A was found to chelate to the "right" of the catalytic zinc where the p-methoxyphenyl sits in the S1' active-site pocket, the isopropyl group is in contact with H83 and N80, and the pyridine ring is solvent exposed. The sulfonyl oxygens are in hydrogen-bonding distance to the backbone NHs of L81 and A82. This is similar to the conformation determined by NMR of the inhibitor bound to stromelysin (2, 3). A total of 48 distance restraints were observed between MMP-1 and CGS-27023A from 3D 13C-edited/12C-filtered NOESY and 3D 15N-edited NOESY experiments. An additional 18 intramolecular restraints were observed for CGS-27023A from a 2D 12C-filtered NOESY experiment. A minimal set of NMR experiments in combination with the free MMP-1 assignments were used to assign the MMP-1 (1)H, 13C, and 15N resonances in the MMP-1:CGS-27023A complex. The assignments of CGS-27023A in the complex were obtained from 2D 12C-filtered NOESY and 2D 12C-filtered TOCSY experiments.  相似文献   

11.
Staphylococcal nuclease: sequential assignments and solution structure   总被引:4,自引:0,他引:4  
D A Torchia  S W Sparks  A Bax 《Biochemistry》1989,28(13):5509-5524
Sequential assignments are reported for backbone 15N and 1H of nearly all residues of staphylococcal nuclease (Nase) complexed with thymidine 3',5'-diphosphate and Ca2+. Because of the relatively large size of the Nase ternary complex, Mr 18K, the crucial element of our assignment strategy was the use of isotope-edited two-dimensional NMR spectra, particularly 15N-edited nuclear Overhauser enhancement spectroscopy (NOESY), 15N-edited J-correlated spectroscopy (COSY), and 1H/15N or 1H/13C heteronuclear multiple quantum shift correlation spectroscopy (HMQC). These experiments, together with the more conventional NOESY, COSY, and homonuclear Hartmann-Hahn spectra of natural abundance or deuteriated samples, yielded backbone assignments of 127 of the 136 residues in the structured part of the protein. Using the NOESY data, we identified three helical domains and several beta-sheets which were in close correspondence with secondary structure identified in the crystal structure. Moreover, many long-range NOESY connectivities were identified that were in agreement with distances derived from the crystal structure. The region of the sequence in the neighborhood of residue 50 appears to be more flexible and disordered in solution than in the crystal. Very slowly exchanging amide protons are those found to be hydrogen bonded in the crystal structure; however, even hydrogen-bonded amides located within similar types of regular secondary structures, e.g., alpha-helices, exchange with greatly different rates.  相似文献   

12.
13.
We introduce the use of multiple receivers applied in parallel for simultaneously recording multi-dimensional data sets of proteins in a single experiment. The utility of the approach is established through the introduction of the 2D (15)N,(1)H(N)||(13)CO HSQC experiment in which a pair of two-dimensional (15)N,(1)H(N) and (15)N,(13)CO spectra are recorded. The methodology is further extended to higher dimensionality via the 3D (1)H(N)||(13)CO HNCA in which a pair of data sets recording (13)C(α),(15)N,(1)H(N) and (13)C(α),(15)N,(13)CO chemical shifts are acquired. With the anticipated increases in probe sensitivity it is expected that multiple receiver experiments will become an important approach for efficient recording of NMR data.  相似文献   

14.
Rho GTPases have attracted considerable interest as signaling molecules due to their variety of functional roles in cells. Rnd1 is a relatively recently discovered Rho GTPase with no enzymatic activity against its bound GTP nucleotide, setting it apart from other family members. Research has revealed a critical role for Rnd1 not only in neurite outgrowth, dendrite development, axon guidance, but also in gastric cancer and in endothelial cells during inflammation. Structural information is crucial for understanding the mechanism that forms the basis for protein–protein interactions and functions, but until recently there were no reports of NMR studies directly on the Rnd1 protein. In this paper we report assignments for the majority of Rnd1 NMR resonances based on 2D and 3D NMR spectra. Rnd1 assignment was a challenging task, however, despite optimization strategies that have facilitated NMR studies of the protein (Cao and Buck in Small GTPase 2:295–304, 2012). Besides common triple-resonance experiments, 3D HNCA, 3D HN(CO)CA, 3D HNCO which are usually employed for sequence assignment, 3D NOESY experiments and specific labeling of 13 kinds of amino acids were also utilized to gain as many 1H(N), 13C, and 15N resonances assignments as possible. For 170 cross peaks observed out of 183 possible mainchain N–H correlations in the 1H–15N TROSY spectrum, backbone assignment was finally completed for 127 resonances. The secondary structure was then defined by chemical shifts and TALOS+ based on the assignments. The overall structure in solution compares well with that of Rnd1 in a crystal, except for two short segments, residues 77–83 and residues 127–131. Given that some features are shared among Rho GTPases, Rnd1 assignments are also compared with two other family members, Cdc42 and Rac1. The overall level of Rnd1 assignment is lower than for Cdc42 and Rac1, consistent with its lower stability and possibly increased internal dynamics. However, while the Rnd1 switch II region remained un-assigned, the switch I region could be more fully assigned compared to Cdc42 and Rac1. The NMR assignment and structure analysis reported here provides a robust basis for future study of the binding between Rnd1 and other proteins, as well as for further studies of the molecular function of this unusual GTPase.  相似文献   

15.
DNA oligomer d(CGGAAGACTCTCCTCCG):d(CGGAGGAGAGTCTTCCG) named UASG (17mer M.W. = 11 kDa) was studied by 1H NMR and heteronuclear two dimensional (2D) NMR. All the labile protons and half of the non-exchangeable protons were assigned by use of conventional 1H 2D experiments including NOESY using 1-1 echo excitation for water suppression. Signal degeneracy in the sugar proton region made it difficult to make assignments of the remaining half of the non-exchangeable protons of the oligomer in 1H 2D spectra. Here we report a new strategy using 1H/13C and 1H/31P heteronuclear single-quantum correlation spectroscopy combined with homonuclear three dimensional NOESY-TOCSY. By this strategy, most of the proton resonances of the oligomer have been assigned, and it turned out that the whole conformation of the oligomer is B-form like.  相似文献   

16.
A new 3D HCCH-COSY-TOCSY experiment is presented for the assignment of RNA sugar and protein side chains. The experiment, which combines COSY and TOCSY units, is more powerful than the sum of individual HCCH-COSY and HCCH-TOCSY pulse sequences. The experiment was applied to a 13C, 15N-labeled 26 mer RNA complexed with the antibiotic tobramycin, and a 12 kDa 13C, 15N-labeled FKBP12 protein sample. The power of HCCH-COSY-TOCSY is demonstrated through complete spin system assignments of sugars in the 26 mer RNA sample, which could not be assigned using a combination of HCCH-COSY, HCCH-TOCSY and 13C-edited NOESY experiments.  相似文献   

17.
Methyl groups provide an important source of structural and dynamic information in NMR studies of proteins and their complexes. For this purpose sequence-specific assignments of methyl 1H and 13C resonances are required. In this paper we propose the use of 13C-detected 3D HN(CA)C and HMCMC experiments for assignment of methyl 1H and 13C resonances using a single selectively methyl protonated, perdeuterated and 13C/15N-labeled sample. The high resolution afforded in the 13C directly-detected dimension allows one to rapidly and unambiguously establish correlations between backbone HN strips from the 3D HN(CA)C spectrum and methyl group HmCm strips from the HMCMC spectrum by aligning all possible side-chain carbon chemical shifts and their multiplet splitting patterns. The applicability of these experiments for the assignment of methyl 1H and 13C resonances is demonstrated using the 18.6 kDa B domain of the Escherichia coli mannose transporter (IIBMannose).  相似文献   

18.
Nearly complete sequence-specific 1H, 13C, and 15N resonance assignments are reported for the backbone atoms of the receptor-binding domain of vascular endothelial growth factor (VEGF), a 23-kDa homodimeric protein that is a major regulator of both normal and pathological angiogenesis. The assignment strategy relied on the use of seven 3D triple-resonance experiments [HN(CO)CA, HNCA, HNCO, (HCA)CONH, HN(COCA)HA, HN(CA)HA, and CBCA-(CO)NH] and a 3D 15N-TOCSY-HSQC experiment recorded on a 0.5 mM (12 mg/mL) sample at 500 MHz, pH 7.0, 45 degrees C. Under these conditions, 15N relaxation data show that the protein has a rotational correlation time of 15.0 ns. Despite this unusually long correlation time, assignments were obtained for 94 of the 99 residues; 8 residues lack amide 1H and 15N assignments, presumably due to rapid exchange of the amide 1H with solvent under the experimental conditions used. The secondary structure of the protein was deduced from the chemical shift indices of the 1H alpha, 13C alpha, 13C beta, and 13CO nuclei, and from analysis of backbone NOEs observed in a 3D 15N-NOESY-HSQC spectrum. Two helices and a significant amount of beta-sheet structure were identified, in general agreement with the secondary structure found in a recently determined crystal structure of a similar VEGF construct [Muller YA et al., 1997, Proc Natl Acad Sci USA 94:7192-7197].  相似文献   

19.
A band-selective aromatic–aliphatic C,C-edited four-dimensional NOESY experiment is proposed here. Its key advantage is the absence of auto-correlation signals which makes it very attractive for joint use with non-uniform sampling. It is demonstrated here that the sensitivity of the experiment is not significantly affected by utilization of selective pulses (for either aromatic-13C or aliphatic-13C spins). The method was applied to the sample of E32Q mutant of human S100A1 protein, a homodimer of total molecular mass ~20 kDa. High-resolution 4D spectra were obtained from ~1.5 % of sampling points required conventionally. It is shown that superior resolution facilitates unambiguous assignment of observed aliphatic–aromatic cross-peaks. Additionally, the addition of aliphatic-13C dimension enables to resolve peaks with degenerated aliphatic 1H chemical shifts. All observed cross-peaks were validated against previously determined 3D structure of E32Q mutant of S100A1 protein (PDB 2LHL). The increased reliability of structural constraints obtained from the proposed high-resolution 4D 13C(ali),13C(aro)-edited NOESY can be exploited in the automated protocols of structure determination of proteins.  相似文献   

20.
M Ikura  L E Kay  A Bax 《Biochemistry》1990,29(19):4659-4667
A novel approach is described for obtaining sequential assignment of the backbone 1H, 13C, and 15N resonances of larger proteins. The approach is demonstrated for the protein calmodulin (16.7 kDa), uniformly (approximately 95%) labeled with 15N and 13C. Sequential assignment of the backbone residues by standard methods was not possible because of the very narrow chemical shift distribution range of both NH and C alpha H protons in this largely alpha-helical protein. We demonstrate that the combined use of four new types of heteronuclear 3D NMR spectra together with the previously described HOHAHA-HMQC 3D experiment [Marion, D., et al. (1989) Biochemistry 28, 6150-6156] can provide unambiguous sequential assignment of protein backbone resonances. Sequential connectivity is derived from one-bond J couplings and the procedure is therefore independent of the backbone conformation. All the new 3D NMR experiments use 1H detection and rely on multiple-step magnetization transfers via well-resolved one-bond J couplings, offering high sensitivity and requiring a total of only 9 days for the recording of all five 3D spectra. Because the combination of 3D spectra offers at least two and often three independent pathways for determining sequential connectivity, the new assignment procedure is easily automated. Complete assignments are reported for the proton, carbon, and nitrogen backbone resonances of calmodulin, complexed with calcium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号