首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The compaction of DNA by the HU protein from Thermotoga maritima (TmHU) is analysed on a single-molecule level by the usage of an optical tweezers-assisted force clamp. The condensation reaction is investigated at forces between 2 and 40 pN applied to the ends of the DNA as well as in dependence on the TmHU concentration. At 2 and 5 pN, the DNA compaction down to 30% of the initial end-to-end distance takes place in two regimes. Increasing the force changes the progression of the reaction until almost nothing is observed at 40 pN. Based on the results of steered molecular dynamics simulations, the first regime of the length reduction is assigned to a primary level of DNA compaction by TmHU. The second one is supposed to correspond to the formation of higher levels of structural organisation. These findings are supported by results obtained by atomic force microscopy.  相似文献   

2.
Prokaryotic genomes are compacted by association with small basic proteins, generating what has been termed bacterial chromatin. The ubiquitous DNA-binding protein HU serves this function. DNA-binding properties of HU from the hyperthermophilic eubacterium Thermotoga maritima are shown here to differ significantly from those characteristic of previously described HU homologs. Electrophoretic mobility shift analyses show that T. maritima HU (TmHU) binds double-stranded DNA with high affinity (K(d)=5.6(+/-0.7) nM for 37 bp DNA). Equivalent affinity is observed between 4 degrees C and 45 degrees C. TmHU has higher affinity for DNA containing a set of 4 nt loops separated by 9 bp (K(d)=1.4(+/-0.3) nM), consistent with its introduction of two DNA kinks. Using DNA probes of varying length, the optimal binding site for TmHU is estimated at 37 bp, in sharp contrast to the 9-10 bp binding site reported for other HU homologs. Alignment of >60 HU sequences demonstrates significant sequence conservation: A DNA-intercalating proline residue is almost universally conserved, and it is preceded by arginine and asparagine in most sequences, generating a highly conserved RNP motif; V substitutes for R only in HU from Thermotoga, Thermus and Deinococcus. A fivefold increase in DNA-binding affinity is observed for TmHU in which V is replaced with R (TmHU-V61R; K(d)=1.1(+/-0.2) nM), but a change in the trajectory of DNA flanking the sites of DNA intercalation is inferred from analysis of TmHU-V61R binding to DNA modified with 4 nt loops or with substitutions of 5-hydroxymethyluracil for thymine. Survival in extreme environments places unique demands on protection of genomic DNA from thermal destabilization and on access of DNA to the cellular machinery, demands that may be fulfilled by the specific DNA-binding properties of HU and by the fine structure of the bacterial chromatin.  相似文献   

3.
The histone-like protein TmHU from the hyperthermophilic eubacterium Thermotoga maritima was cloned, expressed to high levels in Escherichia coli, and purified to homogeneity by heat precipitation and cation exchange chromatography. CD spectroscopical studies with secondary structure analysis as well as comparative modeling demonstrate that the dimeric TmHU has a tertiary structure similar to other homologous HU proteins. The Tm of the protein was determined to be 96 degrees C, and thermal unfolding is nearly completely reversible. Surface plasmon resonance measurements for TmHU show that the protein binds to DNA in a highly cooperative manner, with a KD of 73 nM and a Hill coefficient of 7.6 for a 56 bp DNA fragment. It is demonstrated that TmHU is capable to increase the melting point of a synthetic, double-stranded DNA (poly[d(A-T)]) by 47 degrees C, thus suggesting that DNA stabilization may be a major function of this protein in hyperthermophiles. The significant in vitro protection of double-helical DNA may be useful for biotechnological applications.  相似文献   

4.
In mesophilic prokaryotes, the DNA-binding protein HU participates in nucleoid organization as well as in regulation of DNA-dependent processes. Little is known about nucleoid organization in thermophilic eubacteria. We show here that HU from the hyperthermophilic eubacterium Thermotoga maritima HU bends DNA and constrains negative DNA supercoils in the presence of topoisomerase I. However, while binding to a single site occludes approximately 35 bp, association of T. maritima HU with DNA of sufficient length to accommodate multiple protomers results in an apparent shorter occluded site size. Such complexes consist of ordered arrays of protomers, as revealed by the periodicity of DNase I cleavage. Association of TmHU with plasmid DNA yields a complex that is remarkably resistant to DNase I-mediated degradation. TmHU is the only member of this protein family capable of occluding a 35 bp nonspecific site in duplex DNA; we propose that this property allows TmHU to form exceedingly stable associations in which DNA flanking the kinks is sandwiched between adjacent proteins. We suggest that T. maritima HU serves an architectural function when associating with a single 35 bp site, but generates a very stable and compact aggregate at higher protein concentrations that organizes and protects the genomic DNA.  相似文献   

5.
Gene delivery has shown potential in a variety of applications, including basic research, therapies for inborn genetic defects, cancer, AIDS, tissue engineering, and vaccination. Most available systems have serious drawbacks, such as safety hazards, inefficiency under in vivo-like conditions, and expensive production. When using naked DNA, for instance, a large amount of ultrapure DNA has to be applied as a result of degradation by nucleases. Similarly, the use of eukaryotic histones, synthetic peptides, or peptide nucleic acids may be limited by high production costs. We have demonstrated a biotechnologically feasible and economical approach for gene delivery using the histone-like protein from the hyperthermostable eubacterium Thermotoga maritima, TmHU as an efficient gene transfer reagent. HU can be easily isolated from recombinant Escherichia coli, is extraordinarily stable, and protects dsDNA from thermal denaturation. This study demonstrates its use as an inexpensive tool for gene delivery.  相似文献   

6.
7.
Selective binding of the wild type tumor suppressor protein p53 to negatively and positively supercoiled (sc) DNA was studied using intercalative drugs chloroquine (CQ), ethidium bromide, acridine derivatives and doxorubicin as a modulators of the level of DNA supercoiling. The p53 was found to lose gradually its preferential binding to negatively scDNA with increasing concentrations of intercalators until the DNA negative superhelix turns were relaxed. Formation of positive superhelices (due to further increasing intercalator concentrations) rendered the circular duplex DNA to be preferentially bound by the p53 again. CQ at concentrations modulating the closed circular DNA topology did not prevent the p53 from recognizing a specific target sequence within topologically unconstrained linear DNA. Experiments with DNA topoisomer distributions differing in their superhelix densities revealed the p53 to bind selectively DNA molecules possessing higher number of negative or positive superturns. Possible modes of the p53 binding to the negatively or positively supercoiled DNA and tentative biological consequences are discussed.  相似文献   

8.
9.
Three of the most plausible biological theories of arsenic carcinogenesis are protein binding, oxidative stress and altered DNA methylation. This review presents the role of trivalent arsenicals binding to proteins in arsenic carcinogenesis. Using vacuum filtration based receptor dissociation binding techniques, the lifetimes of unidentate (<1s), bidentate (1-2min) and tridentate (1-2h) arsenite containing peptide binding complexes were estimated. According to our experimental data some of the protein targets to which arsenite may bind in vivo include tubulin, poly(ADP-ribose)polymerase (PARP-1), thioredoxin reductase, estrogen receptor-alpha, arsenic(+3)methyltransferase and Keap-1. Arsenite binding to tubulin can lead to several of the genetic effects observed after arsenic exposures (aneuploidy, polyploidy and mitotic arrests). Among many other possible arsenite binding sites are rat hemoglobin, the DNA repair enzyme xeroderma pigmentosum protein A (XPA), and other C2H2, C3H and C4 zinc finger proteins including members of the steroid receptor superfamily (e.g. glucocorticoid receptor). Macromolecules to which arsenite does not bind to include calf thymus DNA, mixed Type II-A histones and bovine H3/H4 histone. Although all six tested arsenicals released iron from ferritin, radioactive arsenite did not bind to the protein horse ferritin.  相似文献   

10.
Virulent lactococcal phages of the Siphoviridae family are responsible for the industrial milk fermentation failures worldwide. Lactococcus lactis, a Gram-positive bacterium widely used for the manufacture of fermented dairy products, is subjected to infections by virulent phages, predominantly those of the 936 group, including phage p2. Among the proteins coded by lactococcal phage genomes, of special interest are those expressed early, which are crucial to efficiently carry out the phage lytic cycle. We previously identified and solved the 3D structure of lactococcal phage p2 ORF34, a single stranded DNA binding protein (SSBp2). Here we investigated the molecular basis of ORF34 binding mechanism to DNA. DNA docking on SSBp2 and Molecular Dynamics simulations of the resulting complex identified R15 as a crucial residue for ssDNA binding. Electrophoretic Mobility Shift Assays (EMSA) and Atomic Force Microscopy (AFM) imaging revealed the inability of the Arg15Ala mutant to bind ssDNA, as compared to the native protein. Since R15 is highly conserved among lactococcal SSBs, we propose that its role in the SSBp2/DNA complex stabilization might be extended to all the members of this protein family.  相似文献   

11.
The DNA mismatch repair (MMR) pathway contributes to the fidelity of DNA synthesis and recombination by correcting mispaired nucleotides and insertion/deletion loops (IDLs). We have investigated whether MMR protein expression, activity, and subcellular location are altered during discrete phases of the cell cycle in mammalian cells. Two distinct methods have been used to demonstrate that although physiological MMR protein expression, mismatch binding, and nick-directed MMR activity within the nucleus are at highest levels during S phase, MMR is active throughout the cell cycle. Despite equal MMR nuclear protein concentrations in S and G(2) phases, mismatch binding and repair activities within G(2) are significantly lower, indicating a post-translational decrease in MMR activity specific to G(2). We further demonstrate that typical co-localization of MutSalpha to late S phase replication foci can be disrupted by 2 microM N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). This concentration of MNNG does not decrease ongoing DNA synthesis nor induce cell cycle arrest until the second cell cycle, with long-term colony survival decreased by only 24%. These results suggest that low level alkylation damage can selectively disrupt MMR proofreading activity during DNA synthesis and potentially increase mutation frequency within surviving cells.  相似文献   

12.
13.
The essential Saccharomyces cerevisiae regulatory protein Rap1 contains two tandem Myb-like DNA binding sub-domains that interact with two defined DNA "hemisites", separated by a trinucleotide linker sequence. We have mapped the thermodynamically defined DNA-binding site of Rap1 by a primer extension method coupled with electrophoretic separation of bound and unbound DNAs. Relative to published consensus sequences, we detect binding interactions that extend 3 bp beyond the 5'-end of the putative DNA-binding site. This new site of interaction is located where the DNA minor groove faces the protein, and may account for the major DNA bending induced by Rap1p that previous studies have mapped to a site immediately upstream of the consensus binding site. In addition, we show that a minimal DNA-binding site made of one single consensus hemisite, preceded or followed by a spacer trinucleotide that interacts with the unstructured protein linker between the two Rap1p DNA binding domains, is able to bind the protein, although at lower affinity. These findings may explain the observed in vivo binding properties of Rap1p at many promoters that lack canonical binding sites.  相似文献   

14.
The dodecamer universal minicircle sequence is a conserved sequence present in minicircles of trypanosomatid kinetoplast DNA studied so far. This sequence is recognised by a protein named universal minicircle sequence binding protein, described for Crithidia fasciculata, involved in minicircle DNA replication. We have identified a Trypanosoma cruzi gene homologue of the Crithidia fasciculata universal minicircle sequence binding protein. Similar to the Crithidia fasciculata universal minicircle sequence binding protein, the Trypanosoma cruzi protein, named PDZ5, contains five zinc finger motifs. Pulsed field gel electrophoresis indicated that the pdz5 gene is located in the chromosomal band XX of the Trypanosoma cruzi genome. The predicted amino acid sequence of PDZ5 shows a high degree of similarity with several trypanosomatid zinc finger proteins. Specific antibody raised against Crithidia fasciculata universal minicircle sequence binding protein recognises both the recombinant and endogenous PDZ5. The complete pdz5 coding sequence cloned in bacteria expresses a recombinant PDZ5 protein that binds specifically to the universal minicircle sequence dodecamer. These data strongly suggest that PDZ5 represents a Trypanosoma cruzi universal minicircle sequence binding protein.  相似文献   

15.
RecA protein recognises two complementary DNA strands for homologous recombination. To gain insight into the molecular mechanism, the thermodynamic parameters of the DNA binding have been characterised by isothermal calorimetry. Specifically, conformational changes of protein and DNA were searched for by measuring variations in enthalpy change (DeltaH) with temperature (heat capacity change, DeltaC(p)). In the presence of the ATP analogue ATPgammaS, the DeltaH for the binding of the first DNA strand depends upon temperature (large DeltaC(p)) and the type of buffer, in a way that is consistent with the organisation of disordered parts and the protonation of RecA upon complex formation. In contrast, the binding of the second DNA strand occurs without any pronounced DeltaC(p), indicating the absence of further reorganisation of the RecA-DNA filament. In agreement with these findings, a significant change in the CD spectrum of RecA was observed only upon the binding of the first DNA strand. In the absence of nucleotide cofactor, the DeltaH of DNA binding is almost independent of temperature, indicating a requirement for ATP in the reorganisation of RecA. When the second DNA strand is complementary to the first, the DeltaH is larger than that for non-complementary DNA strand, but less than the DeltaH of the annealing of the complementary DNA without RecA. This small DeltaH could reflect a weak binding that may facilitate the dissociation of only partly complementary DNA and thus speed the search for complementary DNA. The DeltaH of binding DNA sequences displaying strong base-base stacking is small for both the first and second binding DNA strand, suggesting that the second is also stretched upon interaction with RecA. These results support the proposal that the RecA protein restructures DNA, preparing it for the recognition of a complementary second DNA strand, and that the recognition is due mainly to direct base-base contacts between DNA strands.  相似文献   

16.
The nematode Caenorhabditis elegans protein CEH-37 belongs to the paired OTD/OTX family of homeobox-containing homeodomain proteins. CEH-37 shares sequence similarity with homeodomain proteins, although it specifically binds to double-stranded C. elegans telomeric DNA, which is unusual to homeodomain proteins. Here, we report the solution structure of CEH-37 homeodomain and molecular interaction with double-stranded C. elegans telomeric DNA using nuclear magnetic resonance (NMR) spectroscopy. NMR structure shows that CEH-37 homeodomain is composed of a flexible N-terminal region and three α-helices with a helix-turn-helix (HTH) DNA binding motif. Data from size-exclusion chromatography and fluorescence spectroscopy reveal that CEH-37 homeodomain interacts strongly with double-stranded C. elegans telomeric DNA. NMR titration experiments identified residues responsible for specific binding to nematode double-stranded telomeric DNA. These results suggest that C. elegans homeodomain protein, CEH-37 could play an important role in telomere function via DNA binding.  相似文献   

17.
18.
19.
20.
The response regulator RamR activates expression of the ramCSAB operon, the source of the morphogenetic peptide SapB, and is therefore important for morphogenesis of the bacterium Streptomyces coelicolor. Like most response regulators, RamR consists of an amino-terminal receiver domain and a carboxy-terminal DNA binding domain. Four of five highly conserved active site residues known to be important in other response regulators are present in RamR: D12, D56 (the predicted site of phosphorylation), T84 and K105. Here, we show that in spite of this, RamR did not demonstrate an ability to autophosphorylate in vitro in the presence of small molecule phosphodonors. The unphosphorylated protein behaved as a dimer and bound cooperatively to three sites in the ramC promoter, one with very high affinity and two with lower affinity. On its own, the RamR DNA binding domain could not bind DNA but was able to interfere with the action of full length RamR in a manner suggesting direct protein-protein contact. Surprisingly, substitution of residues D12 or T84 had no effect on RamR function in vivo. In contrast, D56A and K105A substitutions caused defects in both dimer formation and DNA binding while the more conservative substitution, D56N permitted dimer formation but not DNA binding. L102 in RamR corresponds to a well-conserved tyrosine (or aromatic) residue that is important for function in the other response regulators. While a L102Y variant, which introduced the aromatic side-chain usually found at this position, functioned normally, L102A and L102W substitutions blocked RamR function in vivo. We show that these substitutions specifically impaired cooperative DNA binding by RamR at the lower affinity recognition sequences. The biochemical properties of RamR therefore differ markedly from those of other well-characterized response regulators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号