首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two Hibiscus (Malvaceae) species coexist on the oceanic Bonin (Ogasawara) Islands: Hibiscus glaber (an endemic species) and H. tiliaceus (the ancestral non-endemic species). Hibiscus tiliaceus produces extrafloral nectar from the sepals, while H. glaber does not. To clarify the effects of extrafloral nectar loss on Hibiscus-insect relationships, we examined herbivory and insect communities on flower buds of H. glaber and H. tiliaceus. Larvae of the endemic moth Rehimena variegata (Lepidoptera: Pyralidae) attacked 20% of the flower buds on H. glaber, while less than 0.2% of buds on H. tiliaceus were attacked. Introduced species of ants frequently visited the flower buds of H. tiliaceus to collect extrafloral nectar from the sepal, while they rarely visited those of H. glaber. Therefore, extrafloral nectar on H. tiliaceus sepals may function as a facultative defense against flower bud herbivory. The loss of extrafloral nectaries of H. glaber sepals may be related to the original paucity of native herbivores and ants on the Bonin Islands.  相似文献   

2.
Polymorphic microsatellite markers were developed for Hibiscus glaber, an endemic tree of the Bonin Islands. Eighty-seven of the 208 sequences from an enriched library were unique and containing microsatellites. Ten loci were proved to be highly polymorphic among 78 individuals from the Nishi-jima Island. Total exclusionary powers for the first and the second parents were 99.989% and 99.999%, respectively. Nine loci also amplified single fragment from genomic DNA of H. tiliaceus, a related and widespread congener. Our markers can be reliably used for the estimation of current gene flow within/among populations of the two woody Hibiscus species.  相似文献   

3.
The genetic differentiation and structure of Hibiscus tiliaceus , a pantropical plant with sea-drifted seeds, and four allied species were studied using six microsatellite markers. A low level of genetic differentiation was observed among H. tiliaceus populations in the Pacific and Indian Ocean regions, similar to the results of a previous chloroplast DNA (cpDNA) study. Frequent gene flow by long-distance seed dispersal is responsible for species integration of H. tiliaceus in the wide distribution range. On the other hand, highly differentiated populations of H. tiliaceus were detected in West Africa, as well as of Hibiscus pernambucensis in southern Brazil. In the former populations, the African continent may be a geographical barrier that prevents gene flow by sea-drifted seeds. In the latter populations, although there are no known land barriers, the bifurcating South Equatorial Current at the north-eastern horn of Brazil can be a potential barrier to gene flow and may promote the genetic differentiation of these populations. Our results also suggest clear species segregation between H. tiliaceus and H. pernambucensis , which confirms the introgression scenario between these two species that was suggested by a previous cpDNA study. Our results also provide good evidence for recent transatlantic long-distance seed dispersal by sea current. Despite the distinct geographical structure observed in the cpDNA haplotypes, a low level of genetic differentiation was found between Pacific and Atlantic populations of H. pernambucensis , which could be caused by transisthmian gene flow.  相似文献   

4.
Phylogenetic relationships and the spatial genetic structure of a pantropical plant with sea-drifted seeds, Hibiscus tiliaceus L., and its allied species were investigated. The combined distribution range of these species is over almost the entire littoral area of the tropics worldwide, which might result from the dispersal of their sea-drifted seeds and from recurrent speciation in local populations. A phylogenetic tree constructed using the nucleotide sequences of a c. 7500-bp portion of chloroplast DNA suggested the possibility that recurrent speciation from H. tiliaceus has given rise to all of its allied species. Three major sequence haplotypes of H. tiliaceus had wide and overlapping distributions throughout the Pacific, Atlantic and Indian Ocean regions. This distribution pattern was also confirmed by PCR-SSCP (polymerase chain reaction amplification with single-strand conformation polymorphism) and PCR-SSP (PCR amplification with sequence specific primers) analyses performed on more than 1100 samples from 65 populations worldwide. Statistical analysis using F(ST) and analysis of molecular variance did not show significant genetic differentiation among the H. tiliaceus populations in the three oceanic regions. The results reported here suggested substantial gene flow occurred between populations in the different oceanic regions due to sea-drifted seeds. A strong genetic difference between the Pacific and Atlantic populations of Hibiscus pernambucensis Arruda was observed, which indicates that gene flow in this species between the two regions has been prevented. The wide and dominant distribution of a haplotype shared by H. pernambucensis and H. tiliaceus in the Atlantic region suggests significant introgression between the two species in this region.  相似文献   

5.
Isozyme analyses were conducted to study the geographic variation ofCapsicum frutescens L. in Southeast and East Asia, and to investigate its dispersal routes into Japan. Eight enzymes (EST, EM, G6PD, GR, ME(A), PGI, PGM, ShDH) were variable among accessions ofC. frutescens in Southeast and East Asia. Accessions from the Ryukyu Islands were closely related to those in Indonesia, whereas accessions from the Bonin Islands showed exactly the same isozyme patterns as those from Indonesia and Northern Thailand. Accessions in the Ryukyu Islands were different from those in the Bonin Islands, suggesting that there may be two independent dispersal routes into Japan. One route was from Indonesia via the Philippines or Taiwan, or directly to the Ryukyu Islands, and another was from Indonesia via the Mariana Islands, or other islands in the Pacific, to the Bonin Islands.  相似文献   

6.
Conservation of endemic species on oceanic islands is an essential issue for biodiversity conservation. Metrosideros boninensis (Myrtaceae) is an endangered tree species endemic to the Bonin Islands of the western North Pacific Ocean. This species is considered to be extremely rare with less than 400 adult individuals, a number that has fluctuated between the 1880s and 1980s through human influence. We analyzed the genetic diversity and genetic structure of this species using amplified fragment length polymorphism markers and microsatellite markers. Genetic diversity of M. boninensis was extremely low compared to related taxa and similar endemic species from small islands. This low genetic diversity might be attributed to a stepwise colonization process with repeated founder bottlenecks in the dispersal pathway to the Bonin Islands. Populations of M. boninensis showed significant genetic differentiation and isolation by distance over a small geographical scale, despite the fact that this species should have extensive gene dispersal ability. This genetic differentiation might be caused by limited gene flow via pollen and seed among populations and genetic drift amid a small number of remnant individuals. Taken together, these findings suggest that the genetic diversity and connectivity of tree populations on islands are more vulnerable to habitat fragmentation than previously thought. We offer some recommendations for management to ameliorate habitat fragmentation and biological invasion.  相似文献   

7.
Origin and evolution of endemic plants of the Bonin (Ogasawara) Islands   总被引:1,自引:0,他引:1  
The Bonin Islands are typical oceanic islands, located at the western part of the North Pacific Ocean and approximately 1,000 km south of mainland Japan. This archipelago consists of about 20 small islands. Although floristic diversity is low due to the small area and limited environmental diversity, the Bonin Islands harbor unique endemic flora as in other well-known oceanic islands. This paper presents a brief summary of the results obtained from recent studies on the endemic flora of the Bonin Islands. The results are reviewed in relation to the four stages of the evolution of endemic flora in the oceanic islands; migration, establishment, enlargement and diversification. The ancestors of the flora originated mostly from tropical and subtropical Southeast Asia or mainland Japan by rare events of long distance dispersal. The proportion of bird-dispersed species is relatively high as for other oceanic islands. Genetic data sets obtained from allozyme variation in some endemic species suggest that migration occurred several million years ago and genetic diversity is correlated with current population size. At the time of establishment, self-compatible plants are expected to have an advantage. However, the percentage of dioecious plants is relatively high. This is partly due to evolutionary changes from hermaphroditic ancestors to dioecy which occurred in two genera in the Bonin Islands. In addition, there are some examples of evolutionary changes from herbaceous ancestors to woody endemics. Adaptive radiation is found in some genera, although the number of congeneric endemic species is less than five. Studies of allozyme variation inPittosporum, Symplocos andCrepidiastrum showed that genetic identity is generally very high between congeneric species in spite of their distinct morphologies. This result suggests that divergence of these species occurred rather recently and distinct morphological differences are based on a limited number of genetic changes.  相似文献   

8.
The interaction between figs (Ficus, Moraceae) and fig-pollinating wasps (Chalcidoidea, Agaonidae) is one of the most specific mutualisms, and thus is a model system for studying coevolution and cospeciation. In this study we focused on figs and their associated fig-wasps found in the Ryukyu and Bonin (Ogasawara) Islands, Japan, because it has been suggested that breakdown in the specificity may occur in islands or at edge of a species' distribution. We collected 136 samples of 15 native fig species and 95 samples of 13 associated fig-wasps from all major islands in the Ryukyu Islands, including two fig species and one fig-wasp species endemic to the Bonin Islands. We performed molecular phylogenetic analyses using plastid DNA and nuclear ITS sequences for the figs and nuclear 28S rRNA and mitochondrial COI genes for the fig-wasps to investigate the interspecific phylogenies and intraspecific variation within the mutualism. Our phylogenetic analyses using multiple samples per species show the single clade of each fig (except the Bonin endemic species) and fig-pollinating wasp species. Fig species belonging to the same subgenera formed well-supported clades in both plastid and ITS trees, except for the subgenus Urostigma. Likewise, fig wasps emerging from host fig species belonging to the same subgenera formed mostly well supported clades in both 28S and COI trees. Host specificity between the figs and fig-wasps functions strictly in these islands. There was very little sequence variation within species, and that no major geographic structure was found. The two Bonin endemic species (F. boninsimae and F. nishimurae) or their common ancestor and the associated fig-wasps (Blastophaga sp.) are apparently derived from F. erecta and its associated fig-wasps (B. nipponica), respectively, and probably migrated from the Ryukyu Islands.  相似文献   

9.
The dispersal ecology of seventeen maritime species, which are dominant and/or characteristic species of coastal communities on the Ryukyu Islands, was studied. The species wereCalophyllum inophyllum, Canavalia maritima, Clerodendron inerme, Guettarda speciosa, Hernandia sonora, Hibiscus tiliaceus, Ipomoea gracilis, I. pes-caprae, Messerschmidia argentea, Pandanus odoratissimus, Pongamia pinnata, Scaevola frutescens, Sophora tomentosa, Terminalia catappa, Thespesia populnea, Vigna marina andWedelia biflora. The structure and size of disseminules and their buoyancy and viability in seawater were examined in the laboratory. The disseminules of these seventeen species have morphological characteristics for buoyancy, and tests showed that these species could be dispersed by sea currents. Drift disseminules on the drift line, seedlings on the hightide line, and young plants of woody species in the herb zone were observed, being abundant on the coasts of the Ryukyu Islands. The Kuroshio Current carries these disseminules from islands where these species form part of the tropical coastal vegetation.  相似文献   

10.
To study the origin and speciation of plants in oceanic islands, electrophoretic analyses have been done on three endemic species ofSymplocos in the Bonin Islands as well as on three other species;S. kuroki, S. nakaharae andS. tanakae which are considered to be closely related to the Bonin endemics. There occur three species:S. kawakamii, S. pergracilis andS. boninensis in Bonin. The genusSymplocos is one which is considered to be diversified in the Bonin Islands. Seven enzyme systems presumed to be encoded by 18 loci were examined. The genetic diversity was low in the island species, as reported in some oceanic island plants of Hawaii and the Bonin Islands. The three endemics share high genetic identities and they clustered together in the tree drawn by the UPGMA method, suggesting that they are a monophyletic group, that is, they result from a single introduction.  相似文献   

11.
The Ogasawara (Bonin) Islands are oceanic islands of volcanic origin located in the northwestern Pacific Ocean about 1,000 km south of the Japanese mainland. A large carpenter bee, Xylocopa (Koptortosoma) ogasawarensis, is endemic to the islands but its closest relative is unknown. The Ogasawara Islands are geographically closest to the Japanese Archipelago, but this area is inhabited only by species of a different subgenus, Alloxylocopa. Thus, X. ogasawarensis is commonly thought to have originated from other members of Koptortosoma, which is widely distributed in the Oriental tropical region. In this study, we investigated the origin of X. ogasawarensis using a phylogenetic analysis of Xylocopa based on four genes: mitochondrial cytochrome oxidase subunit I (COI) and cytochrome b (Cyt b), and nuclear elongation factor-1alpha (EF-1alpha) and phosphoenolpyruvate carboxykinase (PEPCK). A combined analysis of the four genes strongly suggests that Koptortosoma is a large, polyphyletic group, within which Alloxylocopa is embedded. Xylocopa ogasawarensis emerged as the species most closely related to Alloxylocopa and not to Oriental species of Koptortosoma. Contrary to previous views of the origin of X. ogasawarensis, our results suggest that X. ogasawarensis and Alloxylocopa share a common origin and diverged after they colonized the island regions of East Asia.  相似文献   

12.
Pollinators play an important role in the reproduction of zoophilous plants. A shift in pollinators has often been observed for oceanic island plants, probably because of the differences in fauna. In this study, we obtained data on pollinator shifts from insects to birds in Orobanche boninsimae (Orobanchaceae), a holoparasitic plant species endemic to the Bonin (Ogasawara) Islands, oceanic islands in the Pacific. We observed pollination and measured seed viability in O. boninsimae and its continental sister species O. coerulescens. We found that two passerine birds, the Japanese white-eye (Zosterops japonicus) and bulbul (Hypsipetes amaurotis squameiceps), visited the flowers and sucked the nectar of O. boninsimae, while only insects visited those of O. coerulescens. Viable seeds were produced under pollinator-excluded treatments in the two Orobanche species, indicating that the seeds were produced by automatic self-pollination and/or apomixis. These results suggest that O. boninsimae may be pollinated by birds and can produce seeds by automatic self-pollination/apomixis. This is the first record of visitation of the genus Orobanche by birds. Studies of pollination systems in native plants on the Bonin Islands are few compared to those on other oceanic islands, and O. boninsimae may provide a valuable example of pollinator shifts in the Bonin Islands.  相似文献   

13.
The Bonin Islands are endowed with endemic species. However, these species are at risk of extinction because of the exuberance of invasive alien plants. Therefore, native plant species should be revegetated after eradicating alien plants. We investigated the genetic variation of Terminalia catappa populations in the Bonin Islands by using nuclear (n) microsatellites (simple sequence repeats [SSRs]) and chloroplast (cp) DNA. No significant differences were observed in the genetic diversity of nSSRs among 22 populations. However, recent bottlenecks were detected in three populations on the Chichijima Island group. nSSR variation and cpDNA haplotypes suggested the presence of two genetically distinct groups in the Mukojima and Chichijima Island groups and the Hahajima Island group. A similar genetic structure was observed in plants and animals in the Bonin Islands. Populations on the three islands, which were separated from other islands in each island group when the water depth was 50‐m lower than the present level, were dominated by unique nSSRs clusters, suggesting that historical changes in island connections during the Pleistocene era affected genetic substructuring. These results suggested that different factors contributed to the genetic structure of T. catappa on different geographic scales. At the whole‐island level, the genetic structure was determined by long‐distance seed dispersal by ocean currents. At the island‐group level, the genetic structure was determined by historical changes in island connections caused by changes in the sea level due to glacial–interglacial transition. These findings would help in establishing transplantation zone borders for revegetating T. catappa on the Bonin Islands.  相似文献   

14.
Persea boninensis (Lauraceae) is an endemic tree species distributed throughout the Bonin Islands. It grows in a wide range of environments from dry to mesic forests, and has multiple flowering peaks that may correspond to different habitats on Chichijima Island of the Bonin Islands. We predicted that P. boninensis is differentiated into two groups with different habitats on these islands. We examined and compared the flowering phenology, morphology, and genetics of populations of species growing in dry and mesic forests. We also performed preliminary artificial crossing experiments. Based on our results, P. boninensis on the Chichijima Islands can be clearly divided into two genetic groups with different habitats and flowering times. Although the flowering time difference could act as an effective pre‐zygotic isolation mechanism between the two groups, there was still a 1‐month overlap in flowering time. Furthermore, our artificial crossing experiments between the two groups resulted in plants that set seeds. Therefore, there was no evidence of reproductive isolation after fertilization. Differences in flowering time as well as in growth habitat will have to occur to maintain genetic differentiation between the two groups of P. boninensis.  相似文献   

15.
The Red‐headed Wood Pigeon Columba janthina nitens is endemic to the Ogasawara Islands, an oceanic island chain located 1000 km south of the main islands of Japan. The subspecies is at high risk of extinction because of its small population size and restricted habitat range. We undertook genetic analyses of this pigeon using sequences of a portion of the mitochondrial control region and five microsatellite markers to estimate the genetic characteristics of two wild populations from the Bonin and Volcano Islands, as well as one captive breeding population. The genetic diversity of the wild individuals was exceptionally low in both the mitochondria (nucleotide diversity = 0.00105) and at the microsatellite (3.2 alleles per locus and HE = 0.12) loci. Higher numbers of microsatellite genotypes were observed in the Volcano Islands population than in the Bonin Islands population, which may be because of the relatively low impact of human disturbance. The most common mitochondrial haplotypes and microsatellite alleles observed in the two wild populations were completely fixed in the captive population. Our results suggest that the genetic diversity of the captive population needs to be increased. However, introduction of a wild individual into a captive population can lead to a decreased genetic diversity in the wild population and therefore should be done with caution. The genetic differentiation between the Bonin and the Volcano island groups was low, and the populations of the two island groups should be regarded as a single evolutionarily significant unit. However, special consideration is required for habitat conservation in the Volcano Islands, which may be functioning as a sanctuary for the Red‐headed Wood Pigeon. For the long‐term conservation of threatened bird species that live on remote oceanic islands, determination of management units considering gene flow caused by their flying capacity and maintenance of genetically suitable wild and captive populations are essential.  相似文献   

16.
Sicyopterus lagocephalus is a Gobiidae Sicydiinae (Teleostei) thought to inhabit Indo-Pacific island rivers from Comoros Islands in the Indian Ocean to Australs Islands (French Polynesia) in the Pacific Ocean. Its biological cycle comprises a marine planctonic larval phase of several months allowing it to migrate from island to island, but the other species of the genus, with such a larval stage, have generally a more restricted range and are often endemic. To understand the organisation of a species with such a wide distribution, mtDNA cytochrome b sequences were amplified for 55 specimens of this genus covering most of its distribution range together with six close endemic species and other gobiids used as outgroups. The main result is the confirmation of the ubiquity of S. lagocephalus that occurs over a range of 18,000 km in the Indian and Pacific Oceans. Two clades were identified within this species, one clustering most of French Polynesian haplotypes and the other clustering most of Mascarene (including Comoros) haplotypes. The overall pattern of distribution and phylogenetic relationship suggests that the lineages leading to endemic species originated earlier than S. lagocephalus. This latter seems to be a secondary migrant species, having colonised both Indian and Pacific Oceans with a few exceptions, situated at the border of the range (Madagascar, Marquesas, Rapa). According to the results, the phylogeny of the Sicyopterus group, the age of the different lineages and the past history of the colonisation of the Indo-Pacific islands are discussed.  相似文献   

17.
Approximately one-fourth of Japan's native plant species are threatened with extinction. To conserve these species, it is critical to evaluate genetic diversity at species-level and population-level. Some factors, including population size and geographic distribution, are known to influence the population genetic diversity of wild plant species. This article briefly reviews the population genetic studies that have been conducted on wild threatened plants in Japan. A large population size or wide geographic distribution does not always lead to large genetic diversity, suggesting that historical factors such as speciation processes and population expansion often play more important roles in determining genetic diversity than the number of remnant individuals. The mating system of a species also affects genetic diversity; predominantly selfing species tend to have smaller genetic diversity than outcrossing congeners. Another issue of concern in the conservation genetics of wild plants in Japan is the genetic diversity of insular endemics, because Japan consists of many islands, and the insular flora contains many endemic and threatened species. Previous studies on endemic plants on the Bonin and the Ryukyu Islands are reviewed. Compared to the cases of the Bonin Islands or other oceanic islands, there is much larger genetic diversity in plants endemic to the Ryukyu Islands. This difference is probably the result of the differences in the geological history of these islands. Electronic Publication  相似文献   

18.
The genusCrepidiastrum is distributed in East Asia and includes 7 species. In the Bonin Islands, three species ofCrepidiastrum occur, and all of them are endemic to the islands. For detecting the origin and speciation of these endemic species, electrophoretic studies have been done in three endemic species of the Bonin Islands as well as in the remaining four species ofCrepidiastrum, andYoungia denticulata which is considered to be closely related toCrepidiastrum. A total of 386 individuals were sampled from 14 populations. As a result, 17 loci of 10 enzyme systems were resolved and gene frequencies for each population were calculated. The genetic variability was low in island species, as reported in some oceanic island plants. Four groups were recognized in the dendrogram generated by the UPGMA method. The Bonin endemics were clustered together, suggesting a monophyletic origin.C. ameristophyllum andC. linguaefolium were found to be genetically very similar, and this may suggest recent and rapid speciation within the islands.  相似文献   

19.
Tang T  Zhong Y  Jian S  Shi S 《Annals of botany》2003,92(3):409-414
Amplified fragment length polymorphism (AFLP) markers were used to investigate the genetic variations within and among nine natural populations of Hibiscus tiliaceus in China. DNA from 145 individuals was amplified with eight primer pairs. No polymorphisms were found among the 20 samples of a marginal population of recent origin probably due to a founder effect. Across the other 125 individuals, 501 of 566 bands (88.5%) were polymorphic, and 125 unique AFLP phenotypes were observed. Estimates of genetic diversity agreed with life history traits of H. tiliaceus and geographical distribution. AMOVA analysis revealed that most genetic diversity resided within populations (84.8%), which corresponded to results reported for outcrossing plants. The indirect estimate of gene flow based on phiST was moderate (Nm=1.395). Long-distance dispersal of floating seeds and local environments may play an important role in shaping the genetic diversity of the population and the genetic structure of this species.  相似文献   

20.
Islands isolated by oceans that act as a geographical barrier for plant migration often possess high species endemism and have been deemed as a natural laboratory for studying species divergence. Fatsia Decne. & Planch. (Araliaceae), with three species, is one of the few plant genera absent in continents while exclusively spanning continental and oceanic islands. The nuclear ribosomal internal transcribed spacer (nrITS) phylogeny uncovered a pattern with reciprocal monophyly of Fatsia oligocarpella Koidz. (Bonin) and Fatsia polycarpa Hayata (Taiwan) vs. paraphyly of Fatsia japonica (Thunb.) Decne. & Planch. (Japan and Ryukyus), suggesting ancestry of the species in Japan and a likely temperate origin; whereas, lack of monophyly of all three allopatrically distributed species at chloroplast DNA (cpDNA) trnL–trnF spacer likely resulted from lineage sorting. In spite of the limited habitats for F. oligocarpella, unexpectedly high genetic variations in this species of oceanic islands were likely attributable to multiple colonizations and recurrent gene introgression. Biogeographical analyses suggested that Fatsia likely diverged via southward colonization in Bonin Islands and Taiwan during the late Pliocene to Pleistocene. Besides, Fatsia species with an allopatric distribution provide a perfect model for testing speciation modes of insular endemics. Nonzero gene flow between species was detected based on MIGRATE and STRUCTURE analyses of DNA sequences and microsatellite fingerprints, suggesting that allopatric speciation is less likely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号