首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
1. Ox heart phosphofructokinase catalyses isotope-exchange reactions at pH6.7 between ADP and ATP, and between fructose 6-phosphate and fructose 1,6-diphosphate, the latter reaction being absolutely dependent on the presence of the magnesium complex of ADP. 2. The reaction kinetics are hyperbolic with respect to substrate concentration for both exchange reactions (within the experimental error). 3. The influence of pH, AMP and citrate suggests that the fructose 6-phosphate-fructose 1,6-diphosphate exchange is subject to effector control, and is abolished by dissociation of the enzyme. 4. These results are discussed in relation to the reaction mechanism of the enzyme.  相似文献   

2.
Glucose 6-phosphate, fructose 6-phosphate, fructose 1, 6-diphosphate, and triose phosphates, and the enzymes phosphofructokinase, aldolase, and glucose 6-phosphate dehydrogenase were extracted from banana fruit (Musa cavendishii, Lambert var. Valery) at the (a) preclimacteric, (b) climacteric rise, (c) climacteric peak, and (d) postclimacteric stages of ripening. The level of fructose 1, 6-diphosphate increased 20-fold whereas the concentration of other intermediates changed no more than 2.5-fold between stages a and c. For these same extracts, phosphofructokinase activity increased 2.5-fold whereas the activity of glucose 6-phosphate dehydrogenase and aldolase changed only fractionally. Substrate saturation studies (fructose 6-phosphate) of phosphofructokinase activity showed a decrease in the [S]0.5 from 5.6 to 1.7 mM betwen stages a and c. The enzyme from both sources seems to be regulated by a negative cooperative effect with the control being more stringent in the enzyme from stage a. The difference in enzyme activity is consistent with the increase in respiratory activity between the two stages.  相似文献   

3.
1. Fructose 1,6-diphosphatase has been purified tenfold from rat liver. The final preparation was not contaminated by either glucose 6-phosphatase or phosphofructokinase. The properties of the enzyme have been investigated in an attempt to define factors that could be of revelance to metabolic control of fructose 1,6-diphosphatase activity. 2. The metal ions Fe2+, Fe3+ and Zn2+ inhibited the activity of fructose 1,6-diphosphatase even in the presence of an excess of mercaptoethanol; other metal ions tested had no effect. The inhibition produced by Zn2+ was reversed by EDTA, but that produced by either Fe2+ or Fe3+ was not reversible. 4. The enzyme has a very low Km for fructose 1,6-diphosphate (2·0μm). Concentrations of fructose 1,6-diphosphate above 75μm inhibited the activity; however, even at very high fructose 1,6-diphosphate concentrations only 70% inhibition was obtained. 5. The activity was also inhibited by low concentrations of AMP, which lowered Vmax. and increased Km for fructose 1,6-diphosphate. Evidence is presented that suggests that AMP can be defined as an allosteric inhibitor of fructose 1,6-diphosphatase. 6. The inhibitions by both fructose 1,6-diphosphate and AMP were extremely specific. Also, the degree of inhibition was not affected by the presence of intermediates of glycolysis, of the tricarboxylic acid cycle, of amino acid metabolism or of fatty acid metabolism. 7. It is suggested that the intracellular concentrations of AMP and fructose 1,6-diphosphate could be of significance in controlling the activity of fructose 1,6-diphosphatase in the liver cell. The possible relationship between these intermediates and the control of gluconeogenesis is discussed.  相似文献   

4.
Level of photosynthetic intermediates in isolated spinach chloroplasts   总被引:15,自引:12,他引:3       下载免费PDF全文
Latzko E  Gibbs M 《Plant physiology》1969,44(3):396-402
The level of intermediates of the photosynthetic carbon cycle was measured in intact spinach chloroplasts in an attempt to determine the cause of the induction lag in CO2 assimilation. In addition, transient changes in the level of the intermediates were determined as affected by a light-dark period and by the addition of an excess amount of bicarbonate during a period of steady photosynthesis. Assayed enzymically were: ribulose 1,5-diphosphate, pentose monophosphates (mixture of ribose 5-phosphate, ribulose 5-phosphate and xylulose 5-phosphate, hexose monophosphates (mixture of glucose 6-phosphate, glucose 1-phosphate, and fructose 6-phosphate), glyceraldehyde 3-phosphate, dihydroxyacetone phosphate, glycerate acid 3-phosphate, a mixture of fructose 1,6-diphosphate and sedoheptulose 1,7-diphosphate, adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP).  相似文献   

5.
1. Purified rabbit-muscle and -liver glucose phosphate isomerase, free of contaminating enzyme activities that could interfere with the assay procedures, were tested for inhibition by fructose, fructose 1-phosphate and fructose 1,6-diphosphate. 2. Fructose 1-phosphate and fructose 1,6-diphosphate are both competitive with fructose 6-phosphate in the enzymic reaction, the apparent Ki values being 1·37×10−3−1·67×10−3m for fructose 1-phosphate and 7·2×10−3−7·9×10−3m for fructose 1,6-diphosphate; fructose and inorganic phosphate were without effect. 3. The apparent Km values for both liver and muscle enzymes at pH7·4 and 30° were 1·11×10−4−1·29×10−4m for fructose 6-phosphate, determined under the conditions in this paper. 4. In the reverse reaction, fructose, fructose 1-phosphate and fructose 1,6-diphosphate did not significantly inhibit the conversion of glucose 6-phosphate into fructose 6-phosphate. 5. The apparent Km values for glucose 6-phosphate were in the range 5·6×10−4−8·5×10−4m. 6. The competitive inhibition of hepatic glucose phosphate isomerase by fructose 1-phosphate is discussed in relation to the mechanism of fructose-induced hypoglycaemia in hereditary fructose intolerance.  相似文献   

6.
The aim of this work was to establish the precise ionic form of the reactants used by pyrophosphate:fructose-6-phosphate phosphotransferase. The enzyme was purified to near-homogeneity from potato (Solanum tuberosum L.) tubers. Changes in enzyme activity when the pH of the assay and the concentration of fructose 6-phosphate, pyrophosphate, and magnesium are varied independently indicate that fructose 6-phosphate2− and MgP2O72− are the reacting species in the glycolytic direction. Analogous experiments with fructose 1,6-bisphosphate, inorganic phosphate, and magnesium demonstrate that the enzyme uses fructose 1,6-bisphosphate4−, HPO42−, and Mg2+ in the gluconeogenic direction. The ionic species used in the glycolytic direction are comparable with those required by bacterial ATP-dependent phosphofructokinase. This is consistent with the proposal that the active site of pyrophosphate:fructose-6-phosphate phosphotransferase in plants is equivalent to that of the bacterial phosphofructokinase (SM Carlisle et al. [1990] J Biol Chem 265: 18366-18371).  相似文献   

7.
Glucose 6-phosphate and fructose 1,6-diphosphate inhibit protein synthesis when added to lysed rabbit reticulocytes. Protein synthesis is inhibited 47% with 6 mM fructose 1,6-diphosphate and 86% with 6 mM glucose 6-phosphate. With 0.125 mM NAD+, the inhibitory effect of glucose 6-phosphate and fructose 1,6-diphosphate becomes stimulatory. The stimulation of protein synthesis in those assays with NAD+ and the phosphorylated sugars is 50% above those assays that contain NAD+ alone. The inhibition of protein synthesis by glucose 6-phosphate and the reversal of this inhibition by NAD+ occurs at a step before the synthesis of the initial dipeptide, methionyl-valine. These data illustrate the importance of NAD+ and the activation of glycolysis in regulating protein synthesis in lysed rabbit reticulocytes.  相似文献   

8.
A method of purification of pyruvate kinase (EC 2.7.1.40) from light-grown Euglena gracilis var. bacillaris was developed which yielded an enzyme preparation purified 115-fold over crude extracts. During organelle formation, levels of pyruvate kinase in extracts prepared from cells engaged in light-induced chloroplast development do not change significantly. The enzyme has a molecular weight of approximately 240,000 and a requirement for both K+ and Mg2+. Fructose 1,6-diphosphate activates the enzyme when the concentration of phosphoenol-pyruvate is limiting; it does not activate when the concentration of ADP is limiting. ATP, citrate, and Ca2+ are inhibitors of the enzyme and inhibit the fructose 1,6-diphosphate stimulation of the enzyme activity. ATP inhibition is only partially reversed by high concentrations of fructose 1,6-diphosphate. Further reversal of inhibition can be achieved by dialysis. Ca2+-dependent inhibition can be reversed by a chelating agent but not by increased concentrations of Mg2+.  相似文献   

9.
A fructose diphosphatase–phosphofructokinase substrate cycle has been reconstructed in vitro to provide a system that recycles fructose 6-phosphate and hydrolyses ATP to ADP and Pi. The concerted actions of glucose phosphate isomerase, phosphofructokinase, aldolase and triose phosphate isomerase catalysed the loss of 3H from [5-3H,U-14C]glucose 6-phosphate. This was used as the basis of a method for the estimation of the fructose diphosphatase–phosphofructokinase substrate cycle. For the reconstructed cycle, the rate of decrease of the 3H/14C ratio in [5-3H,U-14C]hexose 6-phosphate was proportional to the rate of fructose 6-phosphate substrate cycling. A detailed theoretical treatment of this relationship is developed, which enables the rate of substrate cycling to be determined in vivo.  相似文献   

10.
1. The pyruvate kinases of the desert locust fat body and flight muscle were partially purified by ammonium sulphate fractionation. 2. The fat-body enzyme is allosterically activated by very low (1mum) concentrations of fructose 1,6-diphosphate, whereas the flight-muscle enzyme is unaffected by this metabolite at physiological pH. 3. Flight-muscle pyruvate kinase is activated by preincubation at 25 degrees for 5min., whereas the fat-body enzyme is unaffected by such treatment. 4. Both enzymes require 1-2mm-ADP for maximal activity and are inhibited at higher concentrations. With the fat-body enzyme inhibition by ADP is prevented by the presence of fructose 1,6-diphosphate. 5. Both enzymes are inhibited by ATP, half-maximal inhibition occurring at about 5mm-ATP. With the fat-body enzyme ATP inhibition can be reversed by fructose 1,6-diphosphate. 6. The fat-body enzyme exhibits maximal activity at about pH7.2 and the activity decreases rapidly above this pH. This inactivation at high pH is not observed in the presence of fructose 1,6-diphosphate, i.e. maximum stimulating effects of fructose 1,6-diphosphate are observed at high pH. The flight-muscle enzyme exhibits two optima, one at about pH7.2 as with the fat-body enzyme and the other at about pH8.5. Stimulation of the enzyme activity by fructose 1,6-diphosphate was observed at pH8.5 and above.  相似文献   

11.
The aim of this work was to study the pathway(s) of sugar phosphate metabolism in chloroplasts of the unicellular green alga, Dunaliella marina (Volvocales). Phosphofructokinase, detectable in crude cell extracts, copurifled with intact chloroplasts on sucrose density gradients. In isolated chloroplasts, phosphofructokinase activity displayed latency to the same degree as chloroplast marker enzymes. From the quantitative distribution of enzyme activities in fractionated cells, it is concluded that there is an exclusive localization of phosphofructokinase in chloroplasts. In addition, no separation into multiple forms could be achieved. For the study of regulatory properties, chloroplast phosphofructokinase was partially purified by ammonium sulfate fractionation followed by DEAE-cellulose chromatography. The pH optimum of the enzyme activity was 7.0 and was not altered with varying concentrations of substrates or low-molecular-weight effectors. Fructose 6-phosphate showed a sigmoidal saturation curve whose shape was further changed with varying protein concentrations of the preparation. The second substrate, ATP, gave a hyperbolic saturation curve with a Michaelis constant of 60 μm. At a Mg2+ concentration of 2.5 mm, ATP concentrations exceeding 1 mm inhibited the enzyme in a positive cooperative manner. The same type of inhibition was observed with other phosphorylated intermediates of carbon metabolism, the most efficient being phosphoenolpyruvate, glycolate 2-phosphate, glycerate 3-phosphate, and glycerate 2-phosphate. Inorganic phosphate was the only activator found for phosphofructokinase. With nonsaturating fructose 6-phosphate concentrations, Pi activated in a positive cooperative fashion, while no activation occurred with saturating fructose 6-phosphate concentrations. In the presence of either an activator or an inhibitor, the sigmoidal shape of the fructose 6-phosphate saturation curve was altered. Most notably, the activator Pi could relieve the inhibitory action of ATP, phosphoenolpyruvate, glycerate 3-phosphate, glycerate 2-phosphate, and glycolate 2-phosphate. Based on these experimental findings, the regulatory properties of D. marina chloroplast phosphofructokinase are discussed with respect to its playing a key role in the regulation of chloroplast starch metabolism during a light/dark transition. All available evidence is compatible with the interpretation that phosphofructokinase is active only in the dark thus channeling starch degradation products into glycolysis.  相似文献   

12.
When a buffered, aerobic suspension of ethanol-grown cells of Saccharomyces cerevisiae is treated with ethanol, a rapid flux of metabolism is observed from endogenous phosphoenolpyruvate to hexose monophosphates. Intracellular concentrations of phosphoenolpyruvate, 2-phosphoglycerate, and 3-phosphoglycerate record a monotonic drop, while those of triose phosphates and fructose 1,6-diphosphate fall after an early rise; fructose 6-phosphate, mannose 6-phosphate, and glucose 6-phosphate levels rise to a plateau. Prior growth on glucose extinguishes fructose 1,6-diphosphatase activity and completely arrests the rise of the hexose monophosphates. By using mutants blocked at a number of glycolytic steps it has been concluded that the metabolic flow takes place along the Embden-Meyerhof pathway in the reverse direction bypassing pyruvate kinase and fructose 6-phosphate kinase. Ethanol acts as a trigger by supplying NADH at the glyceraldehyde 3-phosphate dehydrogenase step. The rate of the reversal in the span phosphoenolpyruvate to fructose 1,6-diphosphate approaches 40 μ mol of 3-carbon units per minute per gram of wet cells. The in vivo activity of fructose 1,6-diphosphatase is nearly a quarter of this rate.  相似文献   

13.
1. The maximum catalytic activities of fructose diphosphatase from flight muscles of bumble-bees (Bombus spp.) are at least 30-fold those reported for the enzyme from other tissues. The maximum activity of fructose diphosphatase in the flight muscle of any particular bee is similar to that of phosphofructokinase in the same muscle, and the activity of hexokinase is similar to or greater than the activity of phosphofructokinase. There is no detectable activity of glucose 6-phosphatase and only a very low activity of glucose 6-phosphate dehydrogenase in these muscles. The activities of both fructose diphosphatase and phosphofructokinase vary inversely with the body weight of the bee, whereas that of hexokinase is relatively constant. 2. There is no significant hydrolysis of fructose 1-phosphate, fructose 6-phosphate, glucose 1,6-diphosphate and glycerol 3-phosphate by extracts of bumble-bee flight muscle. 3. Fructose 1,6-diphosphatase from bumble-bee flight muscle and from other muscles is inhibited by Mn(2+) and univalent cations; the potency of inhibition by the latter varies in the order Li(+)>Na(+)>K(+). However, the fructose diphosphatase from bumble-bee flight muscle is different from the enzyme from other tissues in that it is not inhibited by AMP. 4. The contents of ATP, hexose monophosphates, fructose diphosphate and triose phosphates in bumble-bee flight muscle showed no significant changes between rest and flight. 5. It is proposed that both fructose diphosphatase and phosphofructokinase are simultaneously active and catalyse a cycle between fructose 6-phosphate and fructose diphosphate in resting bumble-bee flight muscle. Such a cycle would produce continuous hydrolysis of ATP, with the release of energy as heat, which would help to maintain the thoracic temperature during rest periods at a level adequate for flight.  相似文献   

14.
1. The properties of phosphofructokinase after its slight purification from the mucosa of rat jejunum were studied. 2. The enzyme is inhibited by almost 100% by an excess of ATP (1.6mm), with 0.2mm-fructose 6-phosphate. AMP, ADP, P(i) and NH(4) (+) at 0.2, 0.76, 1.0 and 2mm respectively do not individually prevent the inhibition of phosphofructokinase activity by 1.6mm-ATP with 0.2mm-fructose 6-phosphate to any great extent, but all of them together completely prevent the inhibition of phosphofructokinase by ATP. 3. One of the effects of high concentrations of ATP on the enzyme was to increase enormously the apparent K(m) value for the other substrate fructose 6-phosphate, and this increase is largely counteracted by the presence of AMP, ADP, P(i) and NH(4) (+). At low concentrations of ATP the above effectors individually decrease the concentration of fructose 6-phosphate required for half-maximum velocity and when present together they decrease it further, in a more than additive way. 4. When fructose 6-phosphate is present at a saturating concentration (5mm), 0.3mm-NH(4) (+) increases the maximum velocity of the reaction 3.3-fold; with 0.5mm-fructose 6-phosphate, 4.5mm-NH(4) (+) is required for maximum effect. The other effectors do not change the maximum reaction velocity. 5. The results presented here suggest that NH(4) (+), AMP, ADP and P(i) synergistically decrease the inhibition of phosphofructokinase activity at high concentrations of ATP by decreasing the concentration of fructose 6-phosphate required for half-maximum velocity. Such synergism among the effectors and an observed, low ;energy charge' [(ATP+(1/2)ADP)/(AMP+ADP+ATP)] in conjunction with the possibility of a relatively high NH(4) (+) and fructose 6-phosphate concentration in this tissue, may keep the mucosal phosphofructokinase active and uninhibited by ATP under aerobic conditions, thus explaining the high rate of aerobic glycolysis and the lack of Pasteur effect in this tissue.  相似文献   

15.
1. Phosphofructokinase from rat kidney cortex has been partially purified by using a combination of isoelectric and ammonium sulphate precipitation. This preparation was free of enzymes which interfered with the measurement of either product of phosphofructokinase. 2. At concentrations greater than the optimum, ATP caused inhibition which was decreased by raising the fructose 6-phosphate concentration. This suggested that ATP reduced the affinity of phosphofructokinase for the other substrate. Citrate potentiated the ATP inhibition. 3. AMP and fructose 1,6-diphosphate relieved the inhibition by ATP or citrate by increasing the affinity of the enzyme for fructose 6-phosphate. 4. K(+) is shown to stimulate and Ca(2+) to inhibit phosphofructokinase. 5. The similarity between the complex properties of phosphofructokinase from kidney cortex and other tissues (e.g. cardiac and skeletal muscle, brain and liver) suggests that the enzyme in kidney cortex tissue is normally subject to metabolic control, similar to that in other tissues.  相似文献   

16.
Pig spleen phosphofructokinase has been purified 800-fold with a yield of 17%. Two isoenzymes that appear to be kinetically identical can be separated by DEAE-cellulose column chromatography. In common with the enzyme from other mammalian sources, the spleen enzyme has a pH optimum of 8.2. At pH 7.0 it displays sigmoidal kinetics with respect to fructose 6-phosphate concentration but its co-operative behaviour is very dependent on pH, protein concentration and the concentration of MgATP. MgGTP and MgITP can replace MgATP as phosphate donors but, unlike MgATP, these nucleotides do not cause significant inhibition. Mn2+ and Co2+ (as the metal ion-ATP complexes) act as cofactors and in the free form are far more inhibitory than free Mg2+. The spleen enzyme responds to a wide variety of potential effector molecules: ADP, AMP, cyclic AMP, aspartate, NH4+, fructose 6-phosphate, fructose 1,6-diphosphate and Pi all act as either activators or protectors, whereas Mg-ATP, Mg2+, citrate, phosphoenol-pyruvate and the phosphoglucerates are inhibitors.  相似文献   

17.
The regulatory properties of phosphofructokinase from rat mucosa, liver, brain and muscle were investigated. Mucosal phosphofructokinase displayed cooperativity with respect to fructose 6-phosphate at pH 7.0 and so did the muscle, brain and liver isoenzymes. All these four isoenzymes were inhibited by ATP, the mucosal isoenzyme being the least inhibited. They were also inhibited by citrate and creatine phosphate. AMP, ADP, glucose 1,6-diphosphate, fructose 2,6-bisphosphate and inorganic phosphate were all strong activators for the mucosal, brain, liver and muscle phosphofructokinase, but the mucosal isoenzyme was found to be more activated than the others, accounting for the higher rates of glycolysis observed in mucosa. The results suggest that mucosal phosphofructokinase is unique and different from all the other isoenzymes.  相似文献   

18.
Summary A histochemical multi-step technique for the demonstration of phosphofructokinase activity in tissue sections is described. With this technique a semipermeable membrane is interposed between the incubating solution and the tissue sections preventing diffusion of the non-structurally bound enzyme into the medium during incubation. In the histochemical system the enzyme converts the substrate d-fructose-6-phosphate to d-fructose-1,6-diphosphate, which in turn is hydrolyzed by exogenous and endogenous fructose diphosphate aldolase to dihydroxyacetone phosphate and d-glyceraldehyde-3-phosphate. The dihydroxyacetone phosphate is reversibly converted into d-glyceraldehyde-3-phosphate by exogenous and endogenous triosephosphate isomerase. Next the d-glyceraldehyde-3-phosphate is oxidized by exogenous and endogenous glyceraldehyde-3-phosphate dehydrogenase into 1,3-diphospho-d-glycerate. Concomitantly the electrons are transported via NAD+, phenazine methosulphate and menadione to nitro-BT. Sodium azide and amytal are incorporated to block electron transfer to the cytochromes.  相似文献   

19.
1. Phosphofructokinase from rat liver has been partially purified by ammonium sulphate precipitation so as to remove enzymes that interfere in one assay for phosphofructokinase. The properties of this enzyme were found to be similar to those of the same enzyme from other tissues (e.g. cardiac muscle, skeletal muscle and brain) that were previously investigated by other workers. 2. Low concentrations of ATP inhibited phosphofructokinase activity by decreasing the affinity of the enzyme for the other substrate, fructose 6-phosphate. Citrate, and other intermediates of the tricarboxylic acid cycle, also inhibited the activity of phosphofructokinase. 3. This inhibition was relieved by either AMP or fructose 1,6-diphosphate; however, higher concentrations of ATP decreased and finally removed the effect of these activators. 4. Ammonium sulphate protected the enzyme from inactivation, and increased the activity by relieving the inhibition due to ATP. The latter effect was similar to that of AMP. 5. Phosphofructokinase was found in the same cellular compartment as fructose 1,6-diphosphatase, namely the soluble cytoplasm. 6. The properties of phosphofructokinase and fructose 1,6-diphosphatase are compared and a theory is proposed that affords dual control of both enzymes in the liver. The relation of this to the control of glycolysis and gluconeogenesis is discussed.  相似文献   

20.
The initial kinetics of yeast phosphofructokinase was studied by stopped-flow measurements over an enzyme concentration range from 0.5 mg/ml to 0.01 mg/ml. Before attaining the steady state the reaction showed a lag phase in the product formation, the duration of which was found to decrease with increasing enzyme concentration. The lag phase disappeared after preincubation of the enzyme for at least five minutes with either fructose 6-phosphate, fructose 1,6-bisphosphate or fructose 2,6-bisphosphate. Preincubation of the enzyme with either AMP or ADP resulted in a reduction of this phase, while ATP was without effect. Simultaneous addition of fructose 1,6-bisphosphate to the reaction mixture of the enzyme causes a significant shortening of the transient phase, whereas micromolar concentrations of fructose 2,6-bisphosphate are capable of abolishing the lag phase completely. The occurrence of an initial transient phase suggests that the enzyme after starting the reaction converts from a state of low activity to one of high activity. This conversion mainly depends on the concentration of fructose 1,6-bisphosphate generated in the course of the reaction. In addition an association reaction of the enzyme seems to be involved in the process of conversion of the phosphofructokinase during the initial transient phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号