首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a semiparametric mean residual life mixture cure model for right-censored survival data with a cured fraction. The model employs the proportional mean residual life model to describe the effects of covariates on the mean residual time of uncured subjects and the logistic regression model to describe the effects of covariates on the cure rate. We develop estimating equations to estimate the proposed cure model for the right-censored data with and without length-biased sampling, the latter is often found in prevalent cohort studies. In particular, we propose two estimating equations to estimate the effects of covariates in the cure rate and a method to combine them to improve the estimation efficiency. The consistency and asymptotic normality of the proposed estimates are established. The finite sample performance of the estimates is confirmed with simulations. The proposed estimation methods are applied to a clinical trial study on melanoma and a prevalent cohort study on early-onset type 2 diabetes mellitus.  相似文献   

2.
A logistic regression with random effects model is commonly applied to analyze clustered binary data, and every cluster is assumed to have a different proportion of success. However, it could be of interest to obtain the proportion of success over clusters (i.e. the marginal proportion of success). Furthermore, the degree of correlation among data of the same cluster (intraclass correlation) is also a relevant concept to assess, but when using logistic regression with random effects it is not possible to get an analytical expression of the estimators for marginal proportion and intraclass correlation. In our paper, we assess and compare approaches using different kinds of approximations: based on the logistic‐normal mixed effects model (LN), linear mixed model (LMM), and generalized estimating equations (GEE). The comparisons are completed by using two real data examples and a simulation study. The results show the performance of the approaches strongly depends on the magnitude of the marginal proportion, the intraclass correlation, and the sample size. In general, the reliability of the approaches get worsen with low marginal proportion and large intraclass correlation. LMM and GEE approaches arises as reliable approaches when the sample size is large.  相似文献   

3.
Gray RJ 《Biometrics》2000,56(2):571-576
An estimator of the regression parameters in a semiparametric transformed linear survival model is examined. This estimator consists of a single Newton-like update of the solution to a rank-based estimating equation from an initial consistent estimator. An automated penalized likelihood algorithm is proposed for estimating the optimal weight function for the estimating equations and the error hazard function that is needed in the variance estimator. In simulations, the estimated optimal weights are found to give reasonably efficient estimators of the regression parameters, and the variance estimators are found to perform well. The methodology is applied to an analysis of prognostic factors in non-Hodgkin's lymphoma.  相似文献   

4.
Summary Case–cohort sampling is a commonly used and efficient method for studying large cohorts. Most existing methods of analysis for case–cohort data have concerned the analysis of univariate failure time data. However, clustered failure time data are commonly encountered in public health studies. For example, patients treated at the same center are unlikely to be independent. In this article, we consider methods based on estimating equations for case–cohort designs for clustered failure time data. We assume a marginal hazards model, with a common baseline hazard and common regression coefficient across clusters. The proposed estimators of the regression parameter and cumulative baseline hazard are shown to be consistent and asymptotically normal, and consistent estimators of the asymptotic covariance matrices are derived. The regression parameter estimator is easily computed using any standard Cox regression software that allows for offset terms. The proposed estimators are investigated in simulation studies, and demonstrated empirically to have increased efficiency relative to some existing methods. The proposed methods are applied to a study of mortality among Canadian dialysis patients.  相似文献   

5.
Kang S  Cai J 《Biometrics》2009,65(2):405-414
Summary .  A retrospective dental study was conducted to evaluate the degree to which pulpal involvement affects tooth survival. Due to the clustering of teeth, the survival times within each subject could be correlated and thus the conventional method for the case–control studies cannot be directly applied. In this article, we propose a marginal model approach for this type of correlated case–control within cohort data. Weighted estimating equations are proposed for the estimation of the regression parameters. Different types of weights are also considered for improving the efficiency. Asymptotic properties of the proposed estimators are investigated and their finite sample properties are assessed via simulations studies. The proposed method is applied to the aforementioned dental study.  相似文献   

6.
Clegg LX  Cai J  Sen PK 《Biometrics》1999,55(3):805-812
In multivariate failure time data analysis, a marginal regression modeling approach is often preferred to avoid assumptions on the dependence structure among correlated failure times. In this paper, a marginal mixed baseline hazards model is introduced. Estimating equations are proposed for the estimation of the marginal hazard ratio parameters. The proposed estimators are shown to be consistent and asymptotically Gaussian with a robust covariance matrix that can be consistently estimated. Simulation studies indicate the adequacy of the proposed methodology for practical sample sizes. The methodology is illustrated with a data set from the Framingham Heart Study.  相似文献   

7.
Mixed case interval‐censored data arise when the event of interest is known only to occur within an interval induced by a sequence of random examination times. Such data are commonly encountered in disease research with longitudinal follow‐up. Furthermore, the medical treatment has progressed over the last decade with an increasing proportion of patients being cured for many types of diseases. Thus, interest has grown in cure models for survival data which hypothesize a certain proportion of subjects in the population are not expected to experience the events of interest. In this article, we consider a two‐component mixture cure model for regression analysis of mixed case interval‐censored data. The first component is a logistic regression model that describes the cure rate, and the second component is a semiparametric transformation model that describes the distribution of event time for the uncured subjects. We propose semiparametric maximum likelihood estimation for the considered model. We develop an EM type algorithm for obtaining the semiparametric maximum likelihood estimators (SPMLE) of regression parameters and establish their consistency, efficiency, and asymptotic normality. Extensive simulation studies indicate that the SPMLE performs satisfactorily in a wide variety of settings. The proposed method is illustrated by the analysis of the hypobaric decompression sickness data from National Aeronautics and Space Administration.  相似文献   

8.
Postulating a slightly general set-up of a two equation model specification errors in estimating the coefficient in a seemingly unrelated regression equation model, utilizing asymptotically more efficient estimators than the least square method, are considered and symptotic properties are analyzed.  相似文献   

9.
In follow‐up studies, the disease event time can be subject to left truncation and right censoring. Furthermore, medical advancements have made it possible for patients to be cured of certain types of diseases. In this article, we consider a semiparametric mixture cure model for the regression analysis of left‐truncated and right‐censored data. The model combines a logistic regression for the probability of event occurrence with the class of transformation models for the time of occurrence. We investigate two techniques for estimating model parameters. The first approach is based on martingale estimating equations (EEs). The second approach is based on the conditional likelihood function given truncation variables. The asymptotic properties of both proposed estimators are established. Simulation studies indicate that the conditional maximum‐likelihood estimator (cMLE) performs well while the estimator based on EEs is very unstable even though it is shown to be consistent. This is a special and intriguing phenomenon for the EE approach under cure model. We provide insights into this issue and find that the EE approach can be improved significantly by assigning appropriate weights to the censored observations in the EEs. This finding is useful in overcoming the instability of the EE approach in some more complicated situations, where the likelihood approach is not feasible. We illustrate the proposed estimation procedures by analyzing the age at onset of the occiput‐wall distance event for patients with ankylosing spondylitis.  相似文献   

10.
Longitudinal data are common in clinical trials and observational studies, where missing outcomes due to dropouts are always encountered. Under such context with the assumption of missing at random, the weighted generalized estimating equation (WGEE) approach is widely adopted for marginal analysis. Model selection on marginal mean regression is a crucial aspect of data analysis, and identifying an appropriate correlation structure for model fitting may also be of interest and importance. However, the existing information criteria for model selection in WGEE have limitations, such as separate criteria for the selection of marginal mean and correlation structures, unsatisfactory selection performance in small‐sample setups, and so forth. In particular, there are few studies to develop joint information criteria for selection of both marginal mean and correlation structures. In this work, by embedding empirical likelihood into the WGEE framework, we propose two innovative information criteria named a joint empirical Akaike information criterion and a joint empirical Bayesian information criterion, which can simultaneously select the variables for marginal mean regression and also correlation structure. Through extensive simulation studies, these empirical‐likelihood‐based criteria exhibit robustness, flexibility, and outperformance compared to the other criteria including the weighted quasi‐likelihood under the independence model criterion, the missing longitudinal information criterion, and the joint longitudinal information criterion. In addition, we provide a theoretical justification of our proposed criteria, and present two real data examples in practice for further illustration.  相似文献   

11.
Estimation in a Cox proportional hazards cure model   总被引:7,自引:0,他引:7  
Sy JP  Taylor JM 《Biometrics》2000,56(1):227-236
Some failure time data come from a population that consists of some subjects who are susceptible to and others who are nonsusceptible to the event of interest. The data typically have heavy censoring at the end of the follow-up period, and a standard survival analysis would not always be appropriate. In such situations where there is good scientific or empirical evidence of a nonsusceptible population, the mixture or cure model can be used (Farewell, 1982, Biometrics 38, 1041-1046). It assumes a binary distribution to model the incidence probability and a parametric failure time distribution to model the latency. Kuk and Chen (1992, Biometrika 79, 531-541) extended the model by using Cox's proportional hazards regression for the latency. We develop maximum likelihood techniques for the joint estimation of the incidence and latency regression parameters in this model using the nonparametric form of the likelihood and an EM algorithm. A zero-tail constraint is used to reduce the near nonidentifiability of the problem. The inverse of the observed information matrix is used to compute the standard errors. A simulation study shows that the methods are competitive to the parametric methods under ideal conditions and are generally better when censoring from loss to follow-up is heavy. The methods are applied to a data set of tonsil cancer patients treated with radiation therapy.  相似文献   

12.
Ross EA  Moore D 《Biometrics》1999,55(3):813-819
We have developed methods for modeling discrete or grouped time, right-censored survival data collected from correlated groups or clusters. We assume that the marginal hazard of failure for individual items within a cluster is specified by a linear log odds survival model and the dependence structure is based on a gamma frailty model. The dependence can be modeled as a function of cluster-level covariates. Likelihood equations for estimating the model parameters are provided. Generalized estimating equations for the marginal hazard regression parameters and pseudolikelihood methods for estimating the dependence parameters are also described. Data from two clinical trials are used for illustration purposes.  相似文献   

13.
Multivariate survival data arise from case-control family studies in which the ages at disease onset for family members may be correlated. In this paper, we consider a multivariate survival model with the marginal hazard function following the proportional hazards model. We use a frailty-based approach in the spirit of Glidden and Self (1999) to account for the correlation of ages at onset among family members. Specifically, we first estimate the baseline hazard function nonparametrically by the innovation theorem, and then obtain maximum pseudolikelihood estimators for the regression and correlation parameters plugging in the baseline hazard function estimator. We establish a connection with a previously proposed generalized estimating equation-based approach. Simulation studies and an analysis of case-control family data of breast cancer illustrate the methodology's practical utility.  相似文献   

14.
Atrial fibrillation (AF) is an abnormal heart rhythm characterized by rapid and irregular heartbeat, with or without perceivable symptoms. In clinical practice, the electrocardiogram (ECG) is often used for diagnosis of AF. Since the AF often arrives as recurrent episodes of varying frequency and duration and only the episodes that occur at the time of ECG can be detected, the AF is often underdiagnosed when a limited number of repeated ECGs are used. In studies evaluating the efficacy of AF ablation surgery, each patient undergoes multiple ECGs and the AF status at the time of ECG is recorded. The objective of this paper is to estimate the marginal proportions of patients with or without AF in a population, which are important measures of the efficacy of the treatment. The underdiagnosis problem is addressed by a three‐class mixture regression model in which a patient's probability of having no AF, paroxysmal AF, and permanent AF is modeled by auxiliary baseline covariates in a nested logistic regression. A binomial regression model is specified conditional on a subject being in the paroxysmal AF group. The model parameters are estimated by the Expectation‐Maximization (EM) algorithm. These parameters are themselves nuisance parameters for the purpose of this research, but the estimators of the marginal proportions of interest can be expressed as functions of the data and these nuisance parameters and their variances can be estimated by the sandwich method. We examine the performance of the proposed methodology in simulations and two real data applications.  相似文献   

15.
A mixture Markov regression model is proposed to analyze heterogeneous time series data. Mixture quasi‐likelihood is formulated to model time series with mixture components and exogenous variables. The parameters are estimated by quasi‐likelihood estimating equations. A modified EM algorithm is developed for the mixture time series model. The model and proposed algorithm are tested on simulated data and applied to mosquito surveillance data in Peel Region, Canada.  相似文献   

16.
A population average regression model is proposed to assess the marginal effects of covariates on the cumulative incidence function when there is dependence across individuals within a cluster in the competing risks setting. This method extends the Fine-Gray proportional hazards model for the subdistribution to situations, where individuals within a cluster may be correlated due to unobserved shared factors. Estimators of the regression parameters in the marginal model are developed under an independence working assumption where the correlation across individuals within a cluster is completely unspecified. The estimators are consistent and asymptotically normal, and variance estimation may be achieved without specifying the form of the dependence across individuals. A simulation study evidences that the inferential procedures perform well with realistic sample sizes. The practical utility of the methods is illustrated with data from the European Bone Marrow Transplant Registry.  相似文献   

17.
Regression modeling of semicompeting risks data   总被引:1,自引:0,他引:1  
Peng L  Fine JP 《Biometrics》2007,63(1):96-108
Semicompeting risks data are often encountered in clinical trials with intermediate endpoints subject to dependent censoring from informative dropout. Unlike with competing risks data, dropout may not be dependently censored by the intermediate event. There has recently been increased attention to these data, in particular inferences about the marginal distribution of the intermediate event without covariates. In this article, we incorporate covariates and formulate their effects on the survival function of the intermediate event via a functional regression model. To accommodate informative censoring, a time-dependent copula model is proposed in the observable region of the data which is more flexible than standard parametric copula models for the dependence between the events. The model permits estimation of the marginal distribution under weaker assumptions than in previous work on competing risks data. New nonparametric estimators for the marginal and dependence models are derived from nonlinear estimating equations and are shown to be uniformly consistent and to converge weakly to Gaussian processes. Graphical model checking techniques are presented for the assumed models. Nonparametric tests are developed accordingly, as are inferences for parametric submodels for the time-varying covariate effects and copula parameters. A novel time-varying sensitivity analysis is developed using the estimation procedures. Simulations and an AIDS data analysis demonstrate the practical utility of the methodology.  相似文献   

18.
Mancl and DeRouen (2001, Biometrics57, 126-134) and Kauermann and Carroll (2001, JASA96, 1387-1398) proposed alternative bias-corrected covariance estimators for generalized estimating equations parameter estimates of regression models for marginal means. The finite sample properties of these estimators are compared to those of the uncorrected sandwich estimator that underestimates variances in small samples. Although the formula of Mancl and DeRouen generally overestimates variances, it often leads to coverage of 95% confidence intervals near the nominal level even in some situations with as few as 10 clusters. An explanation for these seemingly contradictory results is that the tendency to undercoverage resulting from the substantial variability of sandwich estimators counteracts the impact of overcorrecting the bias. However, these positive results do not generally hold; for small cluster sizes (e.g., <10) their estimator often results in overcoverage, and the bias-corrected covariance estimator of Kauermann and Carroll may be preferred. The methods are illustrated using data from a nested cross-sectional cluster intervention trial on reducing underage drinking.  相似文献   

19.
Although multicenter data are common, many prediction model studies ignore this during model development. The objective of this study is to evaluate the predictive performance of regression methods for developing clinical risk prediction models using multicenter data, and provide guidelines for practice. We compared the predictive performance of standard logistic regression, generalized estimating equations, random intercept logistic regression, and fixed effects logistic regression. First, we presented a case study on the diagnosis of ovarian cancer. Subsequently, a simulation study investigated the performance of the different models as a function of the amount of clustering, development sample size, distribution of center-specific intercepts, the presence of a center-predictor interaction, and the presence of a dependency between center effects and predictors. The results showed that when sample sizes were sufficiently large, conditional models yielded calibrated predictions, whereas marginal models yielded miscalibrated predictions. Small sample sizes led to overfitting and unreliable predictions. This miscalibration was worse with more heavily clustered data. Calibration of random intercept logistic regression was better than that of standard logistic regression even when center-specific intercepts were not normally distributed, a center-predictor interaction was present, center effects and predictors were dependent, or when the model was applied in a new center. Therefore, to make reliable predictions in a specific center, we recommend random intercept logistic regression.  相似文献   

20.
Horton NJ  Laird NM 《Biometrics》2001,57(1):34-42
This article presents a new method for maximum likelihood estimation of logistic regression models with incomplete covariate data where auxiliary information is available. This auxiliary information is extraneous to the regression model of interest but predictive of the covariate with missing data. Ibrahim (1990, Journal of the American Statistical Association 85, 765-769) provides a general method for estimating generalized linear regression models with missing covariates using the EM algorithm that is easily implemented when there is no auxiliary data. Vach (1997, Statistics in Medicine 16, 57-72) describes how the method can be extended when the outcome and auxiliary data are conditionally independent given the covariates in the model. The method allows the incorporation of auxiliary data without making the conditional independence assumption. We suggest tests of conditional independence and compare the performance of several estimators in an example concerning mental health service utilization in children. Using an artificial dataset, we compare the performance of several estimators when auxiliary data are available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号