首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Centrioles are cylindrical structures that are usually composed of nine triplets of microtubules (MTs) organized around a cartwheel‐shaped structure. Recent studies have proposed a structural model of the SAS‐6‐based cartwheel, yet we do not know the molecular detail of how the cartwheel participates in centriolar MT assembly. In this study, we demonstrate that the human microcephaly protein, CEP135, directly interacts with hSAS‐6 via its carboxyl‐terminus and with MTs via its amino‐terminus. Unexpectedly, CEP135 also interacts with another microcephaly protein CPAP via its amino terminal domain. Depletion of CEP135 not only perturbed the centriolar localization of CPAP, but also blocked CPAP‐induced centriole elongation. Furthermore, CEP135 depletion led to abnormal centriole structures with altered numbers of MT triplets and shorter centrioles. Overexpression of a CEP135 mutant lacking the proper interaction with hSAS‐6 had a dominant‐negative effect on centriole assembly. We propose that CEP135 may serve as a linker protein that directly connects the central hub protein, hSAS‐6, to the outer MTs, and suggest that this interaction stabilizes the proper cartwheel structure for further CPAP‐mediated centriole elongation.  相似文献   

2.
How cells control the numbers of subcellular components is a fundamental question in biology. Given that biosynthetic processes are fundamentally stochastic it is utterly puzzling that some structures display no copy number variation within a cell population. Centriole biogenesis, with each centriole being duplicated once and only once per cell cycle, stands out due to its remarkable fidelity. This is a highly controlled process, which depends on low-abundance rate-limiting factors. How can exactly one centriole copy be produced given the variation in the concentration of these key factors? Hitherto, tentative explanations of this control evoked lateral inhibition- or phase separation-like mechanisms emerging from the dynamics of these rate-limiting factors but how strict centriole number is regulated remains unsolved. Here, a novel solution to centriole copy number control is proposed based on the assembly of a centriolar scaffold, the cartwheel. We assume that cartwheel building blocks accumulate around the mother centriole at supercritical concentrations, sufficient to assemble one or more cartwheels. Our key postulate is that once the first cartwheel is formed it continues to elongate by stacking the intermediate building blocks that would otherwise form supernumerary cartwheels. Using stochastic models and simulations, we show that this mechanism may ensure formation of one and only one cartwheel robustly over a wide range of parameter values. By comparison to alternative models, we conclude that the distinctive signatures of this novel mechanism are an increasing assembly time with cartwheel numbers and the translation of stochasticity in building block concentrations into variation in cartwheel numbers or length.  相似文献   

3.
The cartwheel is a subcentriolar structure consisting of a central hub and nine radially arranged spokes, located at the proximal end of the centriole. It appears at the initial stage of the centriole assembly process as the first ninefold symmetrical structure. The cartwheel was first described more than 50 years ago, but it is only recently that its pivotal role in establishing the ninefold symmetry of the centriole was demonstrated. Significant progress has since been made in understanding its fine structure and assembly mechanism. Most importantly, the central part of the cartwheel, from which the ninefold symmetry originates, is shown to form by self-association of nine dimers of the protein SAS-6. This finding, together with emerging data on other components of the cartwheel, has opened new avenues in centrosome biology.  相似文献   

4.
Centrioles are conserved microtubule-based organelles with 9-fold symmetry that are essential for cilia and mitotic spindle formation. A conserved structure at the onset of centriole assembly is a “cartwheel” with 9-fold radial symmetry and a central tubule in its core. It remains unclear how the cartwheel is formed. The conserved centriole protein, SAS-6, is a cartwheel component that functions early in centriole formation. Here, combining biochemistry and electron microscopy, we characterize SAS-6 and show that it self-assembles into stable tetramers, which serve as building blocks for the central tubule. These results suggest that SAS-6 self-assembly may be an initial step in the formation of the cartwheel that provides the 9-fold symmetry. Electron microscopy of centrosomes identified 25-nm central tubules with repeating subunits and show that SAS-6 concentrates at the core of the cartwheel. Recombinant and native SAS-6 self-oligomerizes into tetramers with ∼6-nm subunits, and these tetramers are components of the centrosome, suggesting that tetramers are the building blocks of the central tubule. This is further supported by the observation that elevated levels of SAS-6 in Drosophila cells resulted in higher order structures resembling central tubule morphology. Finally, in the presence of embryonic extract, SAS-6 tetramers assembled into high density complexes, providing a starting point for the eventual in vitro reconstruction of centrioles.  相似文献   

5.
Centrosome duplication occurs under strict spatiotemporal regulation once per cell cycle, and it begins with cartwheel assembly and daughter centriole biogenesis at the lateral sites of the mother centrioles. However, although much of this process is understood, how centrosome duplication is initiated remains unclear. Here, we show that cartwheel assembly followed by daughter centriole biogenesis is initiated on the NEDD1-containing layer of the pericentriolar material (PCM) by the recruitment of SAS-6 to the mother centriole under the regulation of PLK4. We found that PLK4-mediated phosphorylation of NEDD1 at its S325 amino acid residue directly promotes both NEDD1 binding to SAS-6 and recruiting SAS-6 to the centrosome. Overexpression of phosphomimicking NEDD1 mutant S325E promoted cartwheel assembly and daughter centriole biogenesis initiations, whereas overexpression of nonphosphorylatable NEDD1 mutant S325A abolished the initiations. Collectively, our results demonstrate that PLK4-regulated NEDD1 facilitates initiation of the cartwheel assembly and of daughter centriole biogenesis in mammals.  相似文献   

6.
Centrioles/basal bodies have a characteristic cylindrical structure consisting of nine triplet microtubules arranged in a rotational symmetry. How this elaborate structure is formed is a major unanswered question in cell biology [1, 2]. We previously identified a 170 kDa coiled-coil protein essential for the centriole formation in Chlamydomonas. This protein, Bld10p, is the first protein shown to localize to the cartwheel, a 9-fold symmetrical structure possibly functioning as the scaffold for the centriole-microtubule assembly [3]. Here, we report results by using a series of truncated Bld10p constructs introduced into a bld10 null mutant. Remarkably, a transformant (DeltaC2) in which 35% of Bld10p at the C terminus was deleted assembled centrioles with eight symmetrically arranged triplets, in addition to others with the normal nine triplets. The cartwheels in these eight-membered centrioles had spokes approximately 24% shorter than those in the wild-type, suggesting that the eight-triplet centrioles were formed because the cartwheel's smaller diameter. From the morphology of the cartwheel spoke in the DeltaC2 centriole and immunoelectron-microscope localization, we conclude that Bld10p is a major spoke-tip component that extends the cartwheel diameter and attaches triplet microtubules. These results provide the first experimental evidence for the crucial function of the cartwheel in centriolar assembly.  相似文献   

7.
The centriole is a conserved microtubule‐based organelle essential for both centrosome formation and cilium biogenesis. Five conserved proteins for centriole duplication have been identified. Two of them, SAS‐5 and SAS‐6, physically interact with each other and are codependent for their targeting to procentrioles. However, it remains unclear how these two proteins interact at the molecular level. Here, we demonstrate that the short SAS‐5 C‐terminal domain (residues 390–404) specifically binds to a narrow central region (residues 275–288) of the SAS‐6 coiled coil. This was supported by the crystal structure of the SAS‐6 coiled‐coil domain (CCD), which, together with mutagenesis studies, indicated that the association is mediated by synergistic hydrophobic and electrostatic interactions. The crystal structure also shows a periodic charge pattern along the SAS‐6 CCD, which gives rise to an anti‐parallel tetramer. Overall, our findings establish the molecular basis of the specific interaction between SAS‐5 and SAS‐6, and suggest that both proteins individually adopt an oligomeric conformation that is disrupted upon the formation of the hetero‐complex to facilitate the correct assembly of the nine‐fold symmetric centriole.  相似文献   

8.
Centrioles consist of nine-triplet microtubules arranged in rotational symmetry. This structure is highly conserved among various eukaryotic organisms and serves as the base for the ciliary axoneme. Recently, several proteins such as SAS-6 have been identified as essential to the early process of centriole assembly, but the mechanism that produces the 9-fold symmetry is poorly understood. In C. elegans and Drosophila, SAS-6 has been suggested to function in the formation of a centriolar precursor, a central tube that then assembles nine-singlet microtubules on its surface. However, the generality of the central tube is not clear because in many other organisms, the first structure appearing in the centriole assembly is not a tube but a flat amorphous ring or a cartwheel-a structure with a hub and nine radiating spokes. Here we show that in Chlamydomonas the SAS-6 protein localizes to the central part of the cartwheel and that a null mutant of SAS-6, bld12, lacks that part. Intriguingly, this mutant frequently has centrioles composed of 7, 8, 10, or 11 triplets in addition to 9-triplet centrioles. We presume that, in many organisms, SAS-6 is an essential component of the cartwheel, a structure that stabilizes the 9-triplet structure.  相似文献   

9.
Formation of a new centriole adjacent to a pre-existing centriole occurs only once per cell cycle. Despite being crucial for genome integrity, the mechanisms controlling centriole biogenesis remain elusive. Here, we identify RBM14 as a novel suppressor of assembly of centriolar protein complexes. Depletion of RBM14 in human cells induces ectopic formation of centriolar protein complexes through function of the STIL/CPAP complex. Intriguingly, the formation of such structures seems not to require the cartwheel structure that normally acts as a scaffold for centriole formation, whereas they can retain pericentriolar material and microtubule nucleation activity. Moreover, we find that, upon RBM14 depletion, a part of the ectopic centriolar protein complexes in turn assemble into structures more akin to centrioles, presumably by incorporating HsSAS-6, a cartwheel component, and cause multipolar spindle formation. We further demonstrate that such structures assemble in the cytoplasm even in the presence of pre-existing centrioles. This study sheds light on the possibility that ectopic formation of aberrant structures related to centrioles may contribute to genome instability and tumorigenesis.  相似文献   

10.
Centrioles form cilia and centrosomes, organelles whose dysfunction is increasingly linked to human disease. Centriole duplication relies on a few conserved proteins (ZYG-1/Sak/Plk4, SAS-6, SAS-5/Ana2, and SAS-4), and is often initiated by the formation of an inner "cartwheel" structure. Here, we show that overexpressed Drosophila Sas-6 and Ana2 coassemble into extended tubules (SAStubules) that bear a striking structural resemblance to the inner cartwheel of the centriole. SAStubules specifically interact with centriole proximal ends, but extra DSas-6/Ana2 is only recruited onto centrioles when Sak/Plk4 kinase is also overexpressed. This extra centriolar DSas-6/Ana2 induces centriole overduplication and, surprisingly, increased centriole cohesion. Intriguingly, we observe tubules that are structurally similar to SAStubules linking the engaged centrioles in normal wild-type cells. We conclude that DSas-6 and Ana2 normally cooperate to drive the formation of the centriole inner cartwheel and that they promote both centriole duplication and centriole cohesion in a Sak/Plk4-dependent manner.  相似文献   

11.
The centriole, and the related basal body, is an ancient organelle characterized by a universal 9-fold radial symmetry and is critical for generating cilia, flagella, and centrosomes. The mechanisms directing centriole formation are incompletely understood and represent a fundamental open question in biology. Here, we demonstrate that the centriolar protein SAS-6 forms rod-shaped homodimers that interact through their N-terminal domains to form oligomers. We establish that such oligomerization is essential for centriole formation in C. elegans and human cells. We further generate a structural model of the related protein Bld12p from C. reinhardtii, in which nine homodimers assemble into a ring from which nine coiled-coil rods radiate outward. Moreover, we demonstrate that recombinant Bld12p self-assembles into structures akin to the central hub of the cartwheel, which serves as a scaffold for centriole formation. Overall, our findings establish a structural basis for the universal 9-fold symmetry of centrioles.  相似文献   

12.
Centrioles are the foundation for centrosome and cilia formation. The biogenesis of centrioles is initiated by an assembly mechanism that first synthesizes the ninefold symmetrical cartwheel and subsequently leads to a stable cylindrical microtubule scaffold that is capable of withstanding microtubule-based forces generated by centrosomes and cilia. We report that the conserved WD40 repeat domain–containing cartwheel protein Poc1 is required for the structural maintenance of centrioles in Tetrahymena thermophila. Furthermore, human Poc1B is required for primary ciliogenesis, and in zebrafish, DrPoc1B knockdown causes ciliary defects and morphological phenotypes consistent with human ciliopathies. T. thermophila Poc1 exhibits a protein incorporation profile commonly associated with structural centriole components in which the majority of Poc1 is stably incorporated during new centriole assembly. A second dynamic population assembles throughout the cell cycle. Our experiments identify novel roles for Poc1 in centriole stability and ciliogenesis.  相似文献   

13.
Centrosomes are key microtubule-organizing centers that contain a pair of centrioles, conserved cylindrical, microtubule-based structures. Centrosome duplication occurs once per cell cycle and relies on templated centriole assembly. In many animal cells this process starts with the formation of a radially symmetrical cartwheel structure. The centrosomal protein Cep135 localizes to this cartwheel, but its role in vertebrates is not well understood. Here we examine the involvement of Cep135 in centriole function by disrupting the Cep135 gene in the DT40 chicken B-cell line. DT40 cells that lack Cep135 are viable and show no major defects in centrosome composition or function, although we note a small decrease in centriole numbers and a concomitant increase in the frequency of monopolar spindles. Furthermore, electron microscopy reveals an atypical structure in the lumen of Cep135-deficient centrioles. Centrosome amplification after hydroxyurea treatment increases significantly in Cep135-deficient cells, suggesting an inhibitory role for the protein in centrosome reduplication during S-phase delay. We propose that Cep135 is required for the structural integrity of centrioles in proliferating vertebrate cells, a role that also limits centrosome amplification in S-phase–arrested cells.  相似文献   

14.
Centrioles are assembled during S phase and segregated into 2 daughter cells at the end of mitosis. The initiation of centriole assembly is regulated by polo-like kinase 4 (PLK4), the major serine/threonine kinase in centrioles. Despite its importance in centriole duplication, only a few substrates have been identified, and the detailed mechanism of PLK4 has not been fully elucidated. CP110 is a coiled-coil protein that plays roles in centriolar length control and ciliogenesis in mammals. Here, we revealed that PLK4 specifically phosphorylates CP110 at the S98 position. The phospho-resistant CP110 mutant inhibited centriole assembly, whereas the phospho-mimetic CP110 mutant induced centriole assembly, even in PLK4-limited conditions. This finding implies that PLK4 phosphorylation of CP110 is an essential step for centriole assembly. The phospho-mimetic form of CP110 augmented the centrosomal SAS6 level. Based on these results, we propose that the phosphorylated CP110 may be involved in the stabilization of cartwheel SAS6 during centriole assembly.  相似文献   

15.
Mutations in Klp10A, a microtubule-depolymerising Kinesin-13, lead to overly long centrioles in Drosophila male germ cells. We demonstrated that the loss of Klp10A modifies the distribution of typical proteins involved in centriole assembly and function. In the absence of Klp10A the distribution of Drosophila pericentrin-like protein (Dplp), Sas-4 and Sak/Plk4 that are restricted in control testes to the proximal end of the centriole increase along the centriole length. Remarkably, the cartwheel is lacking or it appears abnormal in mutant centrioles, suggesting that this structure may spatially delimit protein localization. Moreover, the parent centrioles that in control cells have the same dimensions grow at different rates in mutant testes with the mother centrioles longer than the daughters. Daughter centrioles have often an ectopic position with respect to the proximal end of the mothers and failed to recruit Dplp.  相似文献   

16.
Gametocytes are the sole Plasmodium parasite stages that infect mosquitoes; therefore development of functional gametes is required for malaria transmission. Flagellum assembly of the Plasmodium male gamete differs from that of most other eukaryotes in that it is intracytoplasmic but retains a key conserved feature: axonemes assemble from basal bodies. The centriole/basal body protein SAS‐6 normally regulates assembly and duplication of these organelles and its depletion causes severe flagellar/ciliary abnormalities in a diverse array of eukaryotes. Since basal body and flagellum assembly are intimately coupled to male gamete development in Plasmodium, we hypothesized that SAS‐6 disruption may cause gametogenesis defects and perturb transmission. We show that Plasmodium berghei sas6 knockouts display severely abnormal male gametogenesis presenting reduced basal body numbers, axonemal assembly defects and abnormal nuclear allocation. The defects in gametogenesis reduce fertilization and render Pbsas6 knockouts less infectious to mosquitoes. Additionally, we show that lack of Pbsas6 blocks transmission from mosquito to vertebrate host, revealing an additional yet undefined role in ookinete to sporulating oocysts transition. These findings underscore the vulnerability of the basal body/SAS‐6 to malaria transmission blocking interventions.  相似文献   

17.
Centrosomes are cellular organelles that have a major role in the spatial organisation of the microtubule network. The centrosome is comprised of two centrioles that duplicate only once during the cell cycle, generating a procentriole from each mature centriole. Despite the essential roles of centrosomes, the detailed structural mechanisms involved in centriole duplication remain largely unknown. Here, we describe human procentriole assembly using cryo‐electron tomography. In centrosomes, isolated from human lymphoblasts, we observed that each one of the nine microtubule triplets grows independently around a periodic central structure. The proximal end of the A‐microtubule is capped by a conical structure and the B‐ and C‐microtubules elongate bidirectionally from its wall. These observations suggest that the gamma tubulin ring complex (γ‐TuRC) has a fundamental role in procentriole formation by nucleating the A‐microtubule that acts as a template for B‐microtubule elongation that, in turn, supports C‐microtubule growth. This study provides new insights into the initial structural events involved in procentriole assembly and establishes the basis for determining the molecular mechanisms of centriole duplication on the nanometric scale.  相似文献   

18.
How centrioles and basal bodies assemble is a long-standing puzzle in cell biology. To address this problem, we analyzed a novel basal body-defective Chlamydomonas reinhardtii mutant isolated from a collection of flagella-less mutants. This mutant, bld10, displayed disorganized mitotic spindles and cytoplasmic microtubules, resulting in abnormal cell division and slow growth. Electron microscopic observation suggested that bld10 cells totally lack basal bodies. The product of the BLD10 gene (Bld10p) was found to be a novel coiled-coil protein of 170 kD. Immunoelectron microscopy localizes Bld10p to the cartwheel, a structure with ninefold rotational symmetry positioned near the proximal end of the basal bodies. Because the cartwheel forms the base from which the triplet microtubules elongate, we suggest that Bld10p plays an essential role in an early stage of basal body assembly. A viable mutant having such a severe basal body defect emphasizes the usefulness of Chlamydomonas in studying the mechanism of basal body/centriole assembly by using a variety of mutants.  相似文献   

19.
The centriole is an evolutionarily conserved macromolecular structure that is crucial for the formation of flagella, cilia and centrosomes. The ultrastructure of the centriole was first characterized decades ago with the advent of electron microscopy, revealing a striking ninefold radial arrangement of microtubules. However, it is only recently that the molecular mechanisms governing centriole assembly have begun to emerge, including the elucidation of the crucial role of spindle assembly abnormal 6 (SAS-6) proteins in imparting the ninefold symmetry. These advances have brought the field to an exciting era in which architecture meets function.  相似文献   

20.
BACKGROUND: The centriole is one of the most enigmatic organelles in the cell. Centrioles are cylindrical, microtubule-based barrels found in the core of the centrosome. Centrioles also act as basal bodies during interphase to nucleate the assembly of cilia and flagella. There are currently only a handful of known centriole proteins. RESULTS: We used mass-spectrometry-based MudPIT (multidimensional protein identification technology) to identify the protein composition of basal bodies (centrioles) isolated from the green alga Chlamydomonas reinhardtii. This analysis detected the majority of known centriole proteins, including centrin, epsilon tubulin, and the cartwheel protein BLD10p. By combining proteomic data with information about gene expression and comparative genomics, we identified 45 cross-validated centriole candidate proteins in two classes. Members of the first class of proteins (BUG1-BUG27) are encoded by genes whose expression correlates with flagellar assembly and which therefore may play a role in ciliogenesis-related functions of basal bodies. Members of the second class (POC1-POC18) are implicated by comparative-genomics and -proteomics studies to be conserved components of the centriole. We confirmed centriolar localization for the human homologs of four candidate proteins. Three of the cross-validated centriole candidate proteins are encoded by orthologs of genes (OFD1, NPHP-4, and PACRG) implicated in mammalian ciliary function and disease, suggesting that oral-facial-digital syndrome and nephronophthisis may involve a dysfunction of centrioles and/or basal bodies. CONCLUSIONS: By analyzing isolated Chlamydomonas basal bodies, we have been able to obtain the first reported proteomic analysis of the centriole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号