共查询到8条相似文献,搜索用时 0 毫秒
1.
2‐(4‐Ethoxy phenyl)‐4‐phenyl quinoline organic phosphor for solution processed blue organic light‐emitting diodes 下载免费PDF全文
This paper reports the synthesis and characterization of 2‐(4‐ethoxyphenyl)‐4‐phenyl quinoline (OEt‐DPQ) organic phosphor using an acid‐catalyzed Friedlander reaction and the preparation of blended thin films by molecularly doping OEt‐DPQ in poly(methyl methacrylate) (PMMA) at different wt%. The molecular structure of the synthesized phosphor was confirmed by Fourier transform infra‐red (FTIR) spectroscopy and nuclear magnetic resonance spectra (NMR). Surface morphology and percent composition of the elements were assessed by scanning electron microscopy (SEM) and energy dispersive analysis of X‐rays (EDAX). The thermal stability and melting point of OEt‐DPQ and thin films were probed by thermo‐gravimetric analysis (TGA)/differential thermal analysis (DTA) and were found to be 80°C and 113.6°C, respectively. UV–visible optical absorption spectra of OEt‐DPQ in the solid state and blended films produced absorption bands in the range 260–340 nm, while photoluminescence (PL) spectra of OEt‐DPQ in the solid state and blended thin films demonstrated blue emission that was registered at 432 nm when excited at 363–369 nm. However, solvated OEt‐DPQ in chloroform, tetrahydrofuran or dichloromethane showed a blue shift of 31–43 nm. Optical absorption and emission parameters such as molar extinction coefficient (ε), energy gap (Eg), transmittance (T), reflectance (R), refractive index (n), oscillator energy (E0) and oscillator strength (f), quantum yield (φf), oscillator energy (E0), dispersion energy (Ed), Commission Internationale de l'Éclairage (CIE) co‐ordinates and energy yield fluorescence (EF) were calculated to assess the phosphor's suitability as a blue emissive material for opto‐electronic applications such as organic light‐emitting diodes (OLEDs), flexible displays and solid‐state lighting technology. 相似文献
2.
Volatile Eu complexes, namely Eu(TTA)3Phen, Eu(x)Y(1‐x)(TTA)3 Phen; Eu(x)Tb(1‐x)(TTA)3Phen; Eu, europium; Y, yttrium; Tb, Terbium; TTA, thenoyltrifluoroacetone; and Phen, 1,10 phenanthroline were synthesized by maintaining stichiometric ratio. Various characterization techniques such as X‐ray diffraction (XRD), photoluminescence (PL) and thermo gravimetric analysis/differential thermal analysis (TGA/DTA) were carried out for the synthesized complexes. Diffractograms of all the synthesized complexes showed well‐resolved peaks, which revealed that pure and doped organic Eu3+ complexes were crystalline in nature. Of all the synthesized complexes, Eu0.5 Tb0.5(TTA)3Phen showed maximum peak intensity, while the angle of maximum peak intensity for all complexes was almost the same with slightly different d‐values. A prominent sharp red emission line was observed at 611 nm when excited with light at 370 nm. It was observed that the intensity of red emissions increased for doped europium complexes Eu(x)Y(1‐x)(TTA)3Phen and Eu(x)Tb(1‐x)(TTA)3 Phen, when compared with Eu complexes. Emission intensity increased in the following order: Eu(TTA)3Phen > Eu0.5 Tb0.5(TTA)3Phen > Eu0.4 Tb0.6(TTA)3Phen > Eu0.5Y0.5(TTA)3Phen > Eu0.4Y0.6(TTA)3Phen, proving their potential application in organic light‐emitting diodes (OLEDs). TGA showed that Eu complexes doped in Y3+ and Tb3+ have better thermal stability than pure Eu complex. DTA analysis showed that the melting temperature of Eu(TTA)3 Phen was lower than doped Eu complexes. These measurements infer that all complexes were highly stable and could be used as emissive materials for the fabrication of OLEDs. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
3.
We report the photoluminescence characterization of Dy3+‐activated NaM4(VO4)3 (M = Ca, Ba, Sr) phosphors prepared by a solid‐state method. The synthesis was confirmed by X‐ray diffraction (XRD) characterization and photoluminescence (PL) emission results showed sharp blue and yellow bands for NaM4(VO4)3 (M = Ca, Ba, Sr):Dy3+ phosphors at the excitation wavelength of 323 nm, which is near‐UV excitation. Thus, these phosphors could be applicable for near‐UV excited solid‐state lighting devices. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
4.
5.
A cytotoxicity,optical spectroscopy and computational binding analysis of 4‐[3‐acetyl‐5‐(acetylamino)‐2‐methyl‐2,3‐dihydro‐1,3,4‐thiadiazole‐2‐yl]phenyl benzoate in calf thymus DNA 下载免费PDF全文
Subramani Karthikeyan Ganesan Bharanidharan Rajendiran Mangaiyarkarasi Shanmugavel Chinnathambi Ragavan Sriram Krishnaswamy Gunasekaran Kandasamy Saravanan Mani Gopikrishnan Prakasarao Aruna Singaravelu Ganesan 《Luminescence》2018,33(4):731-741
In this study the interaction mechanism between newly synthesized 4‐(3‐acetyl‐5‐(acetylamino)‐2‐methyl‐2, 3‐dihydro‐1,3,4‐thiadiazole‐2‐yl) phenyl benzoate (thiadiazole derivative) anticancer active drug with calf thymus DNA was investigated by using various optical spectroscopy techniques along with computational technique. The absorption spectrum shows a clear shift in the lower wavelength region, which may be due to strong hypochromic effect in the ctDNA and the drug. The results of steady state fluorescence spectroscopy show that there is static quenching occurring while increasing the thiadiazole drug concentration in the ethidium bromide‐ctDNA system. Also the binding constant (K), thermo dynamical parameters of enthalpy change (ΔH°), entropy change (ΔS°) Gibbs free energy change (ΔG°) were calculated at different temperature (293 K, 298 K) and the results are in good agreement with theoretically calculated MMGBSA binding analysis. Time resolved emission spectroscopy analysis clearly explains the thiadiazole derivative competitive intercalation in the ethidium bromide‐ctDNA system. Further, molecular docking studies was carried out to understand the hydrogen bonding and hydrophobic interaction between ctDNA and thiadiazole derivative molecule. In addition the docking and molecular dynamics charge distribution analysis was done to understand the internal stability of thiadiazole derivative drug binding sites of ctDNA. The global reactivity of thiadiazole derivative such as electronegativity, electrophilicity and chemical hardness has been calculated. 相似文献
6.
Large‐scale synthesis of tert‐butyl (3R,5S)‐6‐chloro‐3,5‐dihydroxyhexanoate by a stereoselective carbonyl reductase with high substrate concentration and product yield 下载免费PDF全文
Zhi‐Qiang Liu Zhong‐Liang Hu Xiao‐Jian Zhang Xiao‐Ling Tang Feng Cheng Ya‐Ping Xue Ya‐Jun Wang Lin Wu Dan‐Kai Yao Yi‐Teng Zhou Yu‐Guo Zheng 《Biotechnology progress》2017,33(3):612-620
To biosynthesize the (3R,5S)‐CDHH in an industrial scale, a newly synthesized stereoselective short chain carbonyl reductase (SCR) was successfully cloned and expressed in Escherichia coli. The fermentation of recombinant E. coli harboring SCR was carried out in 500 L and 5000 L fermenters, with biomass and specific activity of 9.7 g DCW/L, 15749.95 U/g DCW, and 10.97 g DCW/L, 19210.12 U/g DCW, respectively. The recombinant SCR was successfully applied for efficient production of (3R,5S)‐CDHH. The scale‐up synthesis of (3R,5S)‐CDHH was performed in 5000 L bioreactor with 400 g/L of (S)‐CHOH at 30°C, resulting in a space‐time yield of 13.7 mM/h/g DCW, which was the highest ever reported. After isolation and purification, the yield and d.e. of (3R,5S)‐CDHH reached 97.5% and 99.5%, respectively. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:612–620, 2017 相似文献
7.
Bohong Liao Lingrong Peng Jin Zhou Huiting Mo Jialan Zhao Zike Yang Xiaowen Guo Peiquan Zhang Xin Zhang Zhibo Zhu 《化学与生物多样性》2019,16(5)
Human nasopharyngeal carcinoma is a common head and neck malignancy with high incidence in Southeast Asia and Southern China. It is necessary to develop safe, effective and inexpensive anticancer agents to improve the therapeutics of patients with nasopharyngeal carcinoma. A series of small molecular compounds based on 6‐(pyrimidin‐4‐yl)‐1H‐indazole were synthesized and evaluated for antiproliferative activities against human nasopharyngeal carcinoma cell lines SUNE1. Compounds 6b , 6c , 6e and 6l showed potent antiproliferative activities similar to positive control drug cisplatin in vitro with lower nephrotoxicity than it. N‐[4‐(1H‐Indazol‐6‐yl)pyrimidin‐2‐yl]benzene‐1,3‐diamine ( 6l ) was selected for further study. It was found that 6l induced mitochondria‐mediated apoptosis and G2/M phase arrest in SUNE1 cells. Furthermore, compound 6l at 10 mg/kg can suppress the growth of an implanted SUNE1 xenograft with a TGI% (tumor growth inhibition) value of 50 % and did not cause serious side effects in BALB/c nude mice. This study suggests that 6‐(pyrimidin‐4‐yl)‐1H‐indazole derivatives are a series of small molecule compounds with anti‐nasopharyngeal carcinoma activities. 相似文献
8.
The luminescent properties and crystal structure of Sr(1.5‐x)‐(1.5y)Mg0.5SiO4:xEu2+,yCe3+ blue phosphor synthesized by co‐precipitation method 下载免费PDF全文
In order to improve the luminescent performance of silicate blue phosphors, Sr(1.5‐x)‐(1.5y)Mg0.5SiO4:xEu2+,yCe3+ phosphors were synthesized using one‐step calcination of a precursor prepared by chemical co‐precipitation. The crystal structure and luminescent properties of the phosphors were analyzed using X‐ray diffraction and fluorescence spectrophotometry, respectively. Because the activated ions (Eu2+) can occupy two different types of sites (Sr1 and Sr2), the emission spectrum of Eu2+ excited at 350 nm contains two single bands (EM1 and EM2) in the wavelength range 400–550 nm, centered at 463 nm, and the emission intensity first increases and then decreases with increasing concentrations of Eu2+ ions. Co‐doping of Ce3+ ions can greatly enhance the emission intensity of Eu2+ by transferring its excitation energy to Eu2+. Because of concentration quenching, a higher substitution concentration of Ce3+ can lead to a decrease in the intensity. Meanwhile, the quantum efficiency of the phosphor is improved after doping with Ce3+, and a blue shift phenomenon is observed in the CIE chromaticity diagram. The results indicate that Sr(1.5‐x)‐(1.5y)Mg0.5SiO4:xEu2+,yCe3+ can be used as a potential new blue phosphor for white light‐emitting diodes. 相似文献