首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydroquinone diphosphate (HQDP) was synthesized and compared to phenyl phosphate (PP) and 1-naphthyl phosphate (NP) as a substrate for alkaline phosphatase (AP) under electrochemical immunoassay (EIA) conditions. Voltammetric and amperometric experiments showed that electrochemical oxidation of hydroquinone (HQ), which is the AP hydrolysis product of HQDP, did not produce electrode passivation, even with repeated biosensor use. In contrast, phenol and 1-naphthol, the hydrolysis products of PP and NP, respectively, were shown to be irreversibly oxidized on the electrode surfaces, and produced rapid electrode passivation, resulting in complete loss of electrode signal. When employed as AP substrate in an iridium oxide based EIA, HQDP produced significantly larger amperometric responses (117 microA/cm2) compared to PP (31 microA/cm2) and NP (27 microA/cm2). The results presented in this paper show that HQDP is an attractive alternative to commonly used AP substrates such as NP and PP. The substrate shows excellent hydrolytic stability, produces larger amperometric responses (than PP or NP), and does not produce sensor passivation.  相似文献   

2.
The present work introduces for the first time a nanoparticulate approach for ex vivo monitoring of acetylcholinesterase‐catalyzed hydrolysis of endogenous acetylcholine released from nerve varicosities in mice atria. Amino‐modified 20‐nm size silica nanoparticles (SNs) doped by luminescent Tb(III) complexes were applied as the nanosensors. Their sensing capacity results from the decreased intensity of Tb(III)‐centred luminescence due to the quenching effect of acetic acid derived from acetylcholinesterase‐catalyzed hydrolysis of acetylcholine. Sensitivity of the SNs in monitoring acetylcholine hydrolysis was confirmed by in vitro experiments. Isolated atria were exposed to the nanosensors for 10 min to stain cell membranes. Acetylcholine hydrolysis was monitored optically in the atria samples by measuring quenching of Tb(III)‐centred luminescence by acetic acid derived from endogenous acetylcholine due to its acetylcholinesterase‐catalyzed hydrolysis. The reliability of the sensing was demonstrated by the quenching effect of exogenous acetylcholine added to the bath solution. Additionally, no luminescence quenching occurred when the atria were pre‐treated with the acetylcholinesterase inhibitor paraoxon.  相似文献   

3.
Aims: We found that an adenine base caused fluorescence quenching of a fluorescein (FL)‐labelled probe in DNA:RNA hybrid sequences, and applied this finding to a nucleic acid sequence–based amplification (NASBA) method. Methods and Results: The present NASBA method employed a probe containing an FL‐modified thymine at its 3′ end and ethidium bromide (EtBr) on the basis of a combination of adenine‐induced quenching and fluorescence resonance energy transfer (FRET) between the FL donor and EtBr acceptor. This NASBA was used to detect Shiga toxin (STX) stx‐specific mRNA in STX‐producing Escherichia coli, demonstrating rapid quantification of the target gene with high sensitivity. Conclusion: Although the inherent quenching effect of adenine was inferior to that of guanine, FRET between the FL and EtBr moieties enhanced the adenine‐induced quenching, allowing rapid and sensitive real‐time NASBA detection. Significance and Impact of the Study: This study gives a novel real‐time diagnostic system based on NASBA for a sensitive mRNA (or viral RNA) detection.  相似文献   

4.
A novel and sensitive chemiluminescence (CL) procedure based on the synergetic catalytic effects of gold nanoclusters (Au NCs) and graphene quantum dots (GQDs) was developed for the reliable measurement of cimetidine (CM). The initial experiments showed that the KMnO4‐based oxidation of alkaline rhodamine B (RhoB) generated a very weak CL emission, which was intensively enhanced in the simultaneous presence of Au NCs and GQDs. CL intermediates can be adsorbed and gathered on the surface of Au NCs, becoming more stable. GQDs participate in the energy transferring processes and facilitate them. These improving effects were simultaneously obtained by adding both Au NCs and GQDs into the RhoB‐KMnO4 reaction. Consequently, the increasing effect of the Au NCs/GQDs mixture was more than that of pure Au NCs or GQDs, and a new nano‐assisted powerful CL system was achieved. Furthermore, a marked quenching in the emission of the introduced CL system was observed in the presence of CM, so the system was examined to design a sensitive sensor for CM. After optimization of influencing parameters, the linear lessening in CL emission intensity of KMnO4‐RhoB‐Au NCs/GQDs was verified for CM concentrations in the range 0.8–200 ng ml?1. The limit of detection (3Sb/m) was 0.3 ng ml?1. Despite being a simple CL method, good sensitivity was obtained for CM detection with reliable results for CM determination in human urine samples.  相似文献   

5.
There is a significant need to accurately measure doxycycline concentrations in view of the adverse effects of an overdose on human health. A fluorescence (FL) detection method was adopted and copper nanoclusters (CuNCs) were synthesized using chemical reduction technology. Based on FL quenching with doxycycline, the prepared CuNCs were used to explore a fluorescent nanoprobe for doxycycline detection. In an optimal sensing environment, this FL nanosensor was sensitive and selective in doxycycline sensing and displayed a linear relationship in the range 0.5–200 μM with a detection limit of 0.092 μΜ. A characterization test demonstrated that CuNCs offered active functional groups for identifying doxycycline using electrostatic interaction and hydrogen bonds. Static quenching and the inner filter effect (IFE) resulted in weakness in the FL of His@CuNCs with doxycycline with great efficiency. This suggested nanosensor was revealed to be a functional model for simple and rapid detection of doxycycline in real samples with very pleasing accuracy.  相似文献   

6.
When excited at 435 nm, tetra‐sulfonate zinc phthalocyanine (ZnPcS4) emitted dual fluorescence at 495 and 702 nm. The abnormal fluorescence at 495 nm was experimentally studied and analyzed in detail for the first time. The abnormal fluorescence at 495 nm was deduced to originate from triplet–triplet (T–T) energy transfer of excited phthalocyanine (3*ZnPcS4). Furthermore, graphene quantum dots (GQDs) enhanced the 495 nm fluorescence quantum yield (Q) of ZnPcS4. The fluorescence properties of ZnPcS4–GQDs conjugate were retained in a cellular environment. Based on the fluorescence of ZnPcS4–GQDs conjugate, we designed and prepared an Apt29/thrombin/Apt15 sandwich thrombin sensor with high specificity and affinity. This cost‐saving, simple operational sensing strategy can be extended to use in sensing/imaging of other biomolecules.  相似文献   

7.
The acute in vitro actions of two potent melanocytolytic agents, hydroquinone (HQ) and beta-mercaptoethanolamine (MEA), were determined in the B-16, Cloudman S-91 and Harding-Passey (HP) murine melanomas grown in vivo. Drug treated melanoma dice (5--480 min) were analyzed for tyrosinase activity and cyclic nucleotide levels (cAMP, cGMP). HQ and MEA effects on tyrosinase activity are complex and vary with tumor type, duration of treatment and agent tested. MEA or HQ inhibited B-16 tyrosinase activity. With combined drug therapy, low concentrations of MEA plus HQ stimulate B-16 tyrosinase activity while high concentrations of the drugs have little effect on enzymatic activity. MEA depresses tyrosinase activity while HQ elevates enzymatic activity in the S-19 melanoma. Both high and low concentrations of the combined drugs (MEA plus HQ) elicit the same response, stimulation at 10 min followed by continued depression of tyrosinase activity for the remainder of the 4 h study period. MEA initially stimulates HP tyrosinase activity followed by depression of enzymic activity. In contrast, HQ initially depresses HP tyrosinase activity followed by stimulation of enzyme activity. In combination the drugs inhibit HP tyrosinase activity. The effects of MEA and/or HQ on murine melanoma cyclic nucleotide levels are equally complex. MEA or HQ elevate cAMP and cGMP levels in all three tumors with the exception of S-91 cGMP levels which are not altered. In combination the drugs increase cyclic nucleotide levels in each of the three tumor types but at different times. No correlation is present between cyclic nucleotide levels and tyrosinase activity. Thus, the action of increased cyclic nucleotide levels in melanogenesis can not be separated from the direct actions of MEA and HQ upon melanogenesis. The divergent effects of MEA and/or HQ on tyrosinase activity and cyclic nucleotide levels in these melanomas are not correlated with the known in vivo melanocytolytic activity of these drugs. Thus, these parameters appear to be inadequate indicators of melanoma cell viability in chemotherapeutic screening of drugs effective in destroying malignant melanoma.  相似文献   

8.
Summary A specific immobilization of laccase (EC 1.10.3.2) onto a ready-to-usep-benzoquinone-activated agarose support is described. The single-step procedure leads to a laccase protein coupling of I8% and an enzyme activity immobilization yield of 27%, while the retained specific activity of the immobilized enzyme was 150% of the specific activity of the free laccase. This peculiar result is thought to be related to the fact that during the process of support activation byp-benzoquinone, a significant amount of the hydroquinone by-product of the activation process is coupled to the support. These coupled derivatives constitute substrate (hydroquinone) analogues for which laccase exhibits a high affinity. Therefore, simultaneous affinity retention on the hydroquinone groups and covalent coupling on the p-benzoquinone groups allow the binding of the enzyme in an advantageous conformation which can generate this increase specific activity by immobilization. The entire process can be considered as an affinity immobilization. The immobilized enzyme is much more stable to the inhibitory action of chloride and azide ions, with a recovery of 100% of the activity, than the free laccase, with a recovery of 67% and 32%, respectively, after removal of the inhibitors by dialysis. The stability was 95% after storage for 14 months at 4° C.Abbreviations HQ hydroquinone - p-BQ p-benzoquinone - U enzyme units Part of the work was presented at the Satellite FEBS 1989 Symposium onBiochemical and biophysical approaches to the study of copper proteins, Camerino, Italy.  相似文献   

9.
Psidium guajava L., which has been used traditionally as a medicinal plant, was explored for anti‐quorum sensing (QS) activity. The anti‐QS activity of the flavonoid (FL) fraction of P. guajava leaves was determined using a biosensor bioassay with Chromobacterium violaceum CV026. Detailed investigation of the effects of the FL‐fraction on QS‐regulated violacein production in C. violaceum ATCC12472 and pyocyanin production, proteolytic, elastolytic activities, swarming motility and biofilm formation in Pseudomonas aeruginosa PAO1 was performed using standard methods. Possible mechanisms of QS‐inhibition were studied by assessing violacein production in response to N‐acyl homoserine lactone (AHL) synthesis in the presence of the FL‐fraction in C. violaceum ATCC31532 and by evaluating the induction of violacein in the mutant C. violaceum CV026 by AHL extracted from the culture supernatants of C. violaceum 31532. Active compounds in the FL‐fraction were identified by liquid chromatography–mass spectrometry (LC–MS). Inhibition of violacein production by the FL‐fraction in a C. violaceum CV026 biosensor bioassay indicated possible anti‐QS activity. The FL‐fraction showed concentration‐dependent decreases in violacein production in C. violaceum 12472 and inhibited pyocyanin production, proteolytic and elastolytic activities, swarming motility and biofilm formation in P. aeruginosa PAO1. Interestingly, the FL‐fraction did not inhibit AHL synthesis; AHL extracted from cultures of C. violaceum 31532 grown in the presence of the FL‐fraction induced violacein in the mutant C. violaceum CV026. LC–MS analysis revealed the presence of quercetin and quercetin‐3‐O‐arabinoside in the FL‐fraction. Both quercetin and quercetin‐3‐O‐arabinoside inhibited violacein production in C. violaceum 12472, at 50 and 100 μg/mL, respectively. Results of this study provide scope for further research to exploit these active molecules as anti‐QS agents.  相似文献   

10.
Carpodesmia tamariscifolia is a brown alga rich in (poly)phenols with important cytotoxic and antioxidant effects. However, the relationship between its chemical composition and its effects is unknown. The aim of this study is to identify the potential compounds and mechanisms responsible for its main effects. The alga was extracted consecutively with hexane, dichloromethane and methanol and further fractionated using Sephadex LH‐20 and silica gel columns when appropriate. The fractions were subjected to thin‐layer chromatography and liquid chromatography‐mass spectrometry analysis and evaluated for their total phenolic content (Folin‐Ciocalteu assay), radical scavenging activity (DPPH assay), cytotoxic activity (MTT assay on the SH‐SY5Y cell line), and ability to generate H2O2 (Amplex Red assay). Chromatographic and phenolic analyses of the fractions indicate that abundant redox‐active phenols are present in all the fractions and that a high amount of prenylated hydroquinone derivatives is present in the apolar ones. In the hexane and dichloromethane fractions, the cytotoxic and antioxidant activities are closely related to their phenolic content, whereas in the methanol fractions, the cytotoxicity is negatively related to the phenolic content and the antioxidant activity is positively related to it. In the same tests, hydroquinone behaves as both strong cytotoxic and antioxidant agent. H2O2 assay shows that C. tamariscifolia fractions and hydroquinone can autoxidize and generate H2O2. Our results suggest that redox‐active phenols produce the pharmacological effects described for C. tamariscifolia and that the hydroquinone moiety of prenylated hydroquinone derivatives is responsible for both cytotoxic (through a pro‐oxidant mechanism secondary to its autoxidation) and antioxidant effects of the apolar fractions.  相似文献   

11.
α-Arbutin (α-Ab) is a powerful skin whitening agent that blocks epidermal melanin biosynthesis by inhibiting the enzymatic oxidation of tyrosine and L-3,4-dihydroxyphenylalanine (L-DOPA). α-Ab was effectively synthesized from hydroquinone (HQ) by enzymatic biotransformation using amylosucrase (ASase). The ASase gene from Deinococcus geothermalis (DGAS) was expressed and efficiently purified from Escherichia coli using a constitutive expression system. The expressed DGAS was functional and performed a glycosyltransferase reaction using sucrose as a donor and HQ as an acceptor. The presence of a single HQ bioconversion product was confirmed by thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). The HQ bioconversion product was isolated by silica gel open column chromatography and its chemical structure determined by 1H and 13C nuclear magnetic resonance (NMR). The product was determined to be hydroquinone-O-α-D-glucopyranoside with a glucose molecule linked to HQ through an α-glycosidic bond. However, the production yield of the transfer reaction was significantly low (1.3%) due to the instability of HQ in the reaction mixture. The instability of HQ was considerably improved by antioxidant agents, particularly ascorbic acid, implying that HQ is labile to oxidation. A maximum yield of HQ transfer product of 90% was obtained at a 10:1 molar ratio of donor (sucrose) and acceptor (HQ) molecules in the presence of 0.2 mM ascorbic acid.  相似文献   

12.
Summary Plant cell suspensions of Catharanthus roseus efficiently converted exogenously supplied hydroquinone (HQ) into arbutin. Arbutin productivity of the cells was strongly influenced by the growth stage of the cultivated cells and by the manner of the addition of HQ. We have developed two methods: (i) cultivating suitable cells for producing arbutin at high density; (ii) efficiently adding toxic HQ to the cells. The yield of arbutin could be increased up to 9.2 g/l (45% of cell dry weight), which is the highest yield in the field of plant biotechnology. Repeated examinations and scaling up to a 20-l jar fermentor suggested that C. roseus cells stably produce arbutin in large amounts under the established conditions. Offprint requests to: S. Inomata  相似文献   

13.
Graphene quantum dots (GQDs) have aroused great interest in the scientific community in recent years due to their unique physicochemical properties and potential applications in different fields. To date, much research has been conducted on the ingenious design and rational construction of GQDs‐based nanomaterials used as electrode materials and/or electrocatalysts. Despite these efforts, research on the efficient synthesis and application of GQDs‐based nanomaterials is still in the early stages of development and timely updates of recent research progress on new design concepts, synthetic strategies, and significant breakthroughs in GQDs‐based nanomaterials are highly desired. In light of the above, the effect of synthetic methods on the final product of the GQDs, the GQDs synthesis mechanism, and specific perspectives regarding the effect of the unique surface and structural properties of GQDs (e.g., defects, heteroatom doping, surface/edge state, size, conductivity) on the electrochemical energy‐related systems are discussed in‐depth in this review. Additionally, this review also focuses on the design of GQDs‐based composites and their applications in the fields of electrochemical energy storage (e.g., supercapacitors and batteries) and electrocatalysis (e.g., fuel cell, water splitting, CO2 reduction), along with constructive suggestions for addressing the remaining challenges in the field.  相似文献   

14.
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that degrade the extracellular matrix (ECM) and regulate the extracellular microenvironment. Despite the significant role that MMP activity plays in cell-cell and cell-ECM interactions, migration, and differentiation, analyses of MMPs in vitro and in vivo have relied upon their abundance using conventional immunoassays, rather than their enzymatic activities. To resolve this issue, diverse nanoprobes have emerged and proven useful as effective activity-based detection tools. Here, we review the recent advances in luminescent nanoprobes and their applications in in vitro diagnosis and in vivo imaging of MMP activity. Nanoprobes with the purpose of sensing MMP activity consist of recognition and detection units, which include MMP-specific substrates and luminescent (fluorescent or bioluminescent) nanoparticles, respectively. With further research into improvement of the optical performance, it is anticipated that luminescent nanoprobes will have great potential for the study of the functional roles of proteases in cancer biology and nanomedicine. [BMB Reports 2015; 48(6): 313-318]  相似文献   

15.
γ‐Aminobutyric acid (GABA) is a well‐known neurotransmitter that regulates inhibitory neurotransmission in the mammalian central nervous system and participates in several processes outside the brain. A reliable quantification method is needed to determine its role in different physiological and pathological conditions. However, GABA measurements have several challenges because GABA is neither fluorescent nor electroactive, and it is difficult to detect using enzymatic reactions because no oxidases or dehydrogenases have been identified. Several methods have been developed to quantify GABA concentrations based on the instrumentation available, the sensitivity required, and the volume of samples analyzed. Most of these methods use high‐performance liquid chromatography (HPLC). Here, we describe a method for quantifying GABA concentrations in small volume samples using enzymatically‐induced electrochemiluminescence with the well‐known GABAse complex, which produces glutamate for use in a luminescent reaction with glutamate oxidase and luminol in an electrochemiluminescence cell. The luminescence obtained was proportional to the GABA concentrations in the micromolar range (1–1000), with linear r2 values > 0.95. GABA standards were treated with the enzymatic reactors to generate glutamate (Glu), which was measured simultaneously with an HPLC technique, to validate this new procedure. The assay was further used to determine GABA concentrations in hippocampal extracts. This alternative may be used to quantify GABA levels in fluid samples, such as microdialysates, other perfusates and tissue extracts. Thus, the method presented here is a good alternative for monitoring GABA levels with good sensitivity compared with the traditional methods that are still in use.  相似文献   

16.
The aim of the present study was to isolate a variety of quorum quenching bacteria (QB) from the rhizosphere and phyllosphere of three agricultural plants using minimal medium (MM)- and non-minimal medium (NM)-based methods. The members of the Pseudomonas genus constituted the most abundant QB genus, particularly in the rhizospheres of all plant samples and showed the highest quorum quenching (QQ) activity according to a screening assay using a biosensor and 3-oxo-C6-HSL (as an important quorum sensing signal in many phytopathogenic bacteria). In addition, QQ-Pseudomonas were recognised as versatile biocontrol agents against non-bacterial and bacterial plant pathogens, such as Pectobacterium carotovorum subsp. carotovorum (Pcc). Three types of quenching activities, including intracellular and extracellular enzymatic and non-enzymatic activities, were observed in QQ-Pseudomonas. Pseudomonas strains, particularly NM-isolated strains with extracellular activity, are the strongest QQ-based biocontrol agents.  相似文献   

17.
A new functional fluorinated material taking n‐propyltrimethoxysilicane (n‐propyl‐TriMOS) and 3,3,3‐trifluoropropyltrimethoxysilicane (TFP‐TriMOS) as precursors was applied to construct a novel dissolved oxygen sensing film. The sensing film was fabricated by dip‐coating the functional fluorinated material‐doped [meso‐tetrakis(pentafluorophenyl) porphyinato] platinum(II) (PtF20TPP) onto a glass slide. The oxygen sensing film exhibited a good linear relationship, fast response time, long stability and high sensitivity to dissolved oxygen. In the developed optical oxygen sensor, an LED and a photodiode were composed to construct a back‐detection optical system not needing an optical fiber based on fluorescence intensity detection. The smart optical oxygen sensor based on the PtF20TPP fluorescence quenching possesses the advantages of portability and low cost and can be applied to the dissolved oxygen in situ monitoring in seawater. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Photoluminescent (PL) carbon quantum dots (CQDs) were prepared successfully using a facile and green procedure. They exhibited striking blue fluorescence and excellent optical properties, with a quantum yield as high as 61.44%. Due to the fluorescence quenching effect and the stronger complexing ability of the phosphoric acid group of 1‐hydroxyethane‐1,1‐diphosphonic acid (HEDP) to Fe3+ , CQDs doped with Fe3+ were adequately constructed as an efficient and sensitive fluorescent probe for HEDP‐specific sensing. The proposed fluorescent probe had a sensitive and rapid response in the range 5–70 μ M. Furthermore, quantitative molecular surface (QMS) analysis based on the Multiwfn program was applied to explore the complexation mode of HEDP and metal ions. The distribution of electrostatic potential (ESP), average local ionization energy (ALIE), the minimum value points and the position of the lone pair electrons on the surface of molecular van der Waals were further determined. More strikingly, this experiment achieved the quantitative detection of water‐soluble phosphonate‐HEDP, for the first time using fluorescence spectrometry. It has been proved to be an effective and intuitive sensing method for the detection of HEDP in real samples.  相似文献   

19.
A ratiometric fluorescent probe 2‐(benzimidazol‐2‐yl)phenyl phosphoric acid (1) for alkaline phosphatase (ALP) is designed and synthesized. The method employs the modulation of the excited‐state intramolecular proton transfer (ESIPT) process of 2‐(2'‐hydroxyphenyl)benzimidazole (HPBI) through the hydroxyl group protection/deprotection reaction. Upon phosphorylated with POCl3, HPBI shows only an emission peak at 363 nm due to the blockage of ESIPT. However, once selective enzymatic hydrolysis with alkaline phosphatase (ALP) in Tris–HCl buffer occurs, the probe 1 is returned to HPBI and the ESIPT process is switched on, which results in a decrease in the emission band at 363 nm and an increase in a new fluorescence peak around 430 nm. The fluorescence intensity ratio at 430 and 360 nm (I430/I360) increases linearly with the activity of ALP up to 0.050 U/mL and the detection limit is 0.0013 U/mL. The proposed probe shows excellent specificity toward ALP. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Fluorescent nanostructures have been widely applied to biomedical researches and clinical diagnosis such as biolabeling/imaging/sensing and have even acted as therapy reagents. Peptide‐based fluorescent nanostructures attract recent interest from biomedical researchers. Inspired by the natural existence of GHK‐Cu complex with a growth factor‐like effect in human blood, here we have developed a novel approach for designing nanosensors through the co‐assembling of two kinds of biomolecules. By making best use of both π‐π stacking between carbon rings and the easy‐oxidation property of an important transmitter molecule, dopamine (DA), we successfully built up a supersensitive and robust fluorescent pH nanosensor by co‐assembling oxidized DA (DAox) with a tripeptide GHK. The GHK‐DAox nanostructures have a quantum yield of 20.82%, which might be the brightest one among all the current co‐assembling structures merely through unmodified biomolecules. We envision this approach could open a new avenue for not only hybrid nanostructure construction, but also may inspire the bioengineering of in vivo luminescent probes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号