首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
An easy and effective strategy for synthesizing a ratiometric fluorescent nanosensor has been demonstrated in this work. Novel fluorescent BSA–AuNPs@Tb–AMP (BSA, bovine serum albumin; AMP, adenosine 5′‐monophosphate; AuNPs, Au nanoparticles) metal–organic framework (MOF) nanostructures were synthesized by encapsulating BSA–AuNPs into Tb–AMP MOFs for the detection of 2,6‐pyridinedicarboxylic acid (DPA) and Hg2+. DPA could strongly co‐ordinate with Tb3+ to replace water molecules from the Tb3+ center and accordingly enhanced the fluorescence of Tb–AMP MOFs. The fluorescence of BSA–AuNPs at 405 nm remained constant. While the fluorescence of BSA–AuNPs at 635 nm was quenched after Hg2+ was added, the fluorescence of Tb–AMP MOFs remained constant. Accordingly, a ratiometric fluorescence nanosensor was constructed for detection of DPA and Hg2+. The ratiometric nanosensor exhibited good selectivity to DPA over other substances. The F545/F405 linearly increased with increase of DPA concentration in the range of 50 nM to 10 μM with a detection limit as low as 17.4 nM. F635/F405 increased linearly with increase of Hg2+ concentration ranging from 50 nM to 1 μM with a detection limit as low as 20.9 nM. Additionally, the nanosensor could be successfully applied for the determination of DPA and Hg2+ in running water.  相似文献   

2.
The binding affinity between bovine serum albumin (BSA) and copper ferrite (CuFe2O4) nanoparticles in terms of conformation, stability and activity of protein was studied using various spectroscopic methods. The quenching involved in BSA–CuFe2O4 NP interaction was static quenching as analysed by different techniques (steady‐state and time‐resolved fluorescence along with temperature‐dependent fluorescence measurements). Among all types of possible interactions, it was revealed that the major binding forces were van der Waals interaction and hydrogen bonding, which were explored from negative values of enthalpy change (?H = ?193.85 kJ mol?1) and entropy change (?S = ?588.88 J mol?1 K?1). Additionally, synchronous, circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy measurements confirmed the conformational changes in BSA upon the addition of CuFe2O4 NP. Furthermore, thermal denaturation observations were consistent with the circular dichroism results. The interaction of CuFe2O4 NP with BSA decreased the esterase activity in the BSA assay, revealing the affinity of copper ferrite towards the active site of BSA.  相似文献   

3.
Zeolitic imidazolate framework‐8 (ZIF‐8) loading rhodamine‐B (ZIF‐8@rhodamine‐B) nanocomposites was proposed and used as ratiometric fluorescent sensor to detect copper(II) ion (Cu2+). Scanning electron microscopy, Fourier transform infrared spectroscopy, X‐ray powder diffraction, nitrogen adsorption/desorption isotherms and fluorescence emission spectroscopy were employed to characterize the ZIF‐8@rhodamine‐B nanocomposites. The results showed the rhodamine‐B was successfully assembled on ZIF‐8 based on the π‐π interaction and the hydrogen bond between the nitrogen atom of ZIF‐8 and –COOH of rhodamine‐B. The as‐obtained ZIF‐8@rhodamine‐B nanocomposites were octahedron with size about 150–200 nm, had good water dispersion, and exhibited the characteristic fluorescence emission of ZIF‐8 at 335 nm and rhodamine‐B at 575 nm. The Cu2+ could quench fluorescence of ZIF‐8 rather than rhodamine‐B. The ZIF‐8 not only acted as the template to assemble rhodamine‐B, but also was employed as the signal fluorescence together with the fluorescence of rhodamine‐B as the reference to construct a novel ratiometric fluorescent sensor to detect Cu2+. The resulted ZIF‐8@rhodamine‐B nanocomposite fluorescence probe showed good linear range (68.4 nM to 125 μM) with a low detection limit (22.8 nM) for Cu2+ combined with good sensitivity and selectivity. The work also provides a better way to design ratiometric fluorescent sensors from ZIF‐8 and other fluorescent molecules.  相似文献   

4.
A strategy has been applied to chloramphenicol (CAP) detection with chemiluminescence immunoassays (CLIA) based on cheap functionalized Fe3O4@SiO2 magnetic nanoparticles (Fe–MNPs). The strategy that bovine serum albumin (BSA) was immobilized on cheap functionalized Fe–MNPs and that the CAP molecules were then immobilized on BSA, avoided the long process of dialysis for preparation of the BSA‐CAP conjugates. The samples were detected for both methods that utilized two different kinds of functionalized Fe–MNPs (amine‐functionalized Fe3O4@SiO2 and carboxylic acid‐functionalized Fe3O4@SiO2). The sensitivities and limits of detection (LODs) of the two methods were obtained and compared based on inhibition curves. The 50% inhibition concentrations (IC50) values of the two methods were about 0.024 ng ml?1 and 0.046 ng ml?1 respectively and LODs were approximately 0.0002 ng ml?1 and 0.001 ng ml?1 respectively. These methods were much more sensitive than that of any traditional enzyme‐linked immunosorbent assay (ELISA) previously reported. Therefore, such chemiluminescence methods could be easily adapted for small molecule detection in a variety of foods using Fe–MNPs.  相似文献   

5.
Serum albumins (human serum albumin (HSA) and bovine serum albumin (BSA), two main circulatory proteins), are globular and monomeric macromolecules in plasma that transport many drugs and compounds. In the present study, we investigated the interactions of the Tb(III)–quercetin (Tb–QUE) complex with HSA and BSA using common spectroscopic techniques and a molecular docking study. Fluorescence data revealed that the inherent fluorescence emission of HSA and BSA was markedly quenched by the Tb–QUE complex through a static quenching mechanism, confirming stable complex formation (a ground‐state association) between albumins and Tb–QUE. Binding and thermodynamic parameters were obtained from the fluorescence spectra and the related equations at different temperatures under biological conditions. The binding constants (Kb) were calculated to be 0.8547 × 103 M?1 for HSA and 0.1363 × 103 M?1 for BSA at 298 K. Also, the number of binding sites (n) of the HSA/BSA–Tb–QUE systems was obtained to be approximately 1. Thermodynamic data calculations along with molecular docking results indicated that electrostatic interactions have a main role in the binding process of the Tb–QUE complex with HSA/BSA. Furthermore, molecular docking outputs revealed that the Tb–QUE complex has high affinity to bind to subdomain IIA of HSA and BSA. Binding distances (r) between HSA–Tb–QUE and BSA–Tb–QUE systems were also calculated using the Forster (fluorescence resonance energy transfer) method. It is expected that this study will provide a pathway for designing new compounds with multiple beneficial effects on human health from the phenolic compounds family such as the Tb–QUE complex.  相似文献   

6.
A novel label-free fluorescence nanosensor was developed for ultrasensitive detection of protamine and heparin based on fluorescence resonance energy transfer (FRET) between NaYF4:Yb,Er upconversion nanoparticles (UCNPs) and gold nanoparticles (AuNPs). The FRET system was formed by the electrostatic adsorption of AuNPs on UCNPs, and the fluorescence of UCNPs was significantly quenched. When protamine was added to the mixture of UCNPs–AuNPs, the AuNPs interacted with protamine and then desorbed from the surface of UCNPs and aggregated, resulting in the recovery of the fluorescence of UCNPs. On the addition of both protamine and heparin, the FRET system formed owing to the stronger interaction between heparin and protamine than that with AuNPs, leading to a marked fluorescence quenching of UCNPs. The concentrations of protamine and heparin were proportional to the changes of the fluorescence of UCNPs. The linear response range was obtained over the concentration ranges of 0.02 to 1.2 μg/ml and 0.002 to 2.0 μg/ml with low detection limits of 6.7 and 0.7 ng/ml for protamine and heparin, respectively. Simultaneous measurement of protamine and heparin in human serum can be achieved, suggesting that the nanosensor can be used in a complex biological sample matrix.  相似文献   

7.
Activation of NAD(P)H oxidase has been reported to produce superoxide (O2??) extracellularly as an autocrine/paracrine regulator or intracellularly as a signaling messenger in a variety of mammalian cells. However, it remains unknown how the activity of NAD(P)H oxidase is regulated in arterial myocytes. Recently, CD38-associated ADP-ribosylcyclase has been reported to use an NAD(P)H oxidase product, NAD+ or NADP+, to produce cyclic ADP-ribose (cADPR) or nicotinic acid adenine dinucleotide phosphate, which mediates intracellular Ca2 + signaling. This study was designed to test a hypothesis that the CD38/cADPR pathway as a downstream event exerts feedback regulatory action on the NAD(P)H oxidase activity in production of extra- or intracellular O2?? in mouse coronary arterial myocytes (CAMs). By fluorescence microscopic imaging, we simultaneously monitored extra- and intracellular O2?? production in wild-type (CD38+/+) and CD38 knockout (CD38?/?) CAMs in response to oxotremorine (OXO), a muscarinic type 1 receptor agonist. It was found that CD38 deficiency prevented OXO-induced intracellular but not extracellular O2?? production in CAMs. Consistently, the OXO-induced intracellular O2?? production was markedly inhibited by CD38 shRNA or the CD38 inhibitor nicotinamide in CD38+/+ CAMs. Further, Nox4 siRNA inhibited OXO-induced intracellular but not extracellular O2?? production, whereas Nox1 siRNA attenuated both intracellular and extracellular O2?? production in CD38+/+ CAMs. Direct delivery of exogenous cADPR into CAMs markedly elevated intracellular Ca2 + and O2?? production in CD38?/? CAMs. Functionally, CD38 deficiency or Nox1 siRNA and Nox4 siRNA prevented OXO-induced contraction in isolated perfused coronary arteries in CD38 WT mice. These results provide direct evidence that the CD38/cADPR pathway is an important controller of Nox4-mediated intracellular O2?? production and that CD38-dependent intracellular O2?? production is augmented in an autocrine manner by CD38-independent Nox1-derived extracellular O2?? production in CAMs.  相似文献   

8.
A novel fluorescent probe‐based naphthalene Schiff, 1‐(C2‐glucosyl‐ylimino‐methyl)‐naphthalene‐2‐ol (L) was synthesized by coupling d ‐glucosamine hydrochloride with 2‐hydroxy‐1‐naphthaldehyde. It exhibited excellent selectivity and highly sensitivity for Al3+ in ethanol with a strong fluorescence response, while other common metal ions such as Pb2+, Mg2+, Cu2+, Co2+, Ni2+, Cd2+, Fe2+, Mn2+, Hg2+, Li+, Na+, K+, Fe3+, Cr3+, Zn2+, Ag+, Ba2+ and Ca2+ did not cause the same fluorescence response. The probe selectively bound Al3+ with a binding constant (Ka) of 5.748 × 103 M?1 and a lowest detection limit (LOD) of 4.08 nM. Moreover, the study found that the fluorescence of the L ? Al3+ complex could be quenched after addition of F? in the same medium, while other anions, including Cl?, Br?, I?, NO2?, NO3?, ClO4?, CO32?, HCO3?, SO42?, HSO4?, CH3COO?, PO43?, HPO42?, S2? and S2O32? had nearly no influence on probe behaviour. Binding of the [L ? Al3+] complex to a F? anion was established by different fluorescence titration studies, with a detection limit of 3.2 nM in ethanol. The fluorescent probe was also successfully applied in the imaging detection of Al3+ and F? in living cells.  相似文献   

9.
A novel method was developed for studying the interaction between epirubicin hydrochloride (EPI) and bovine serum albumin (BSA) by fluorescence spectrometry. Fe3O4 magnetic nanoparticles (MNPs) synthesized and functionalized with thiol group were employed for the immobilization and separation of target BSA in reaction solutions. The concentrations of the non‐immobilized BSA and unbound EPI were obtained separately by fluorescence spectrometry. The binding constants (K a ) and number of binding sites (n ) of EPI with BSA were calculated. In this study, the K a value was 5.05 × 105 L mol?1, suggesting a strong binding of EPI to BSA, and the n value was 1.15. The effects of common metal ions on K a of EPI with BSA were also investigated, and the results showed there was clearly bindings between the metal ions and BSA. The precise binding sites of EPI on BSA were determined as being in site I from the competitive displacement experiments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The intermolecular interaction of fosinopril, an angiotensin converting enzyme inhibitor with bovine serum albumin (BSA), has been investigated in physiological buffer (pH 7.4) by multi‐spectroscopic methods and molecular docking technique. The results obtained from fluorescence and UV absorption spectroscopy revealed that the fluorescence quenching mechanism of BSA induced by fosinopril was mediated by the combined dynamic and static quenching, and the static quenching was dominant in this system. The binding constant, Kb, value was found to lie between 2.69 × 103 and 9.55 × 103 M?1 at experimental temperatures (293, 298, 303, and 308 K), implying the low or intermediate binding affinity between fosinopril and BSA. Competitive binding experiments with site markers (phenylbutazone and diazepam) suggested that fosinopril preferentially bound to the site I in sub‐domain IIA on BSA, as evidenced by molecular docking analysis. The negative sign for enthalpy change (ΔH0) and entropy change (ΔS0) indicated that van der Waals force and hydrogen bonds played important roles in the fosinopril‐BSA interaction, and 8‐anilino‐1‐naphthalenesulfonate binding assay experiments offered evidence of the involvements of hydrophobic interactions. Moreover, spectroscopic results (synchronous fluorescence, 3‐dimensional fluorescence, and Fourier transform infrared spectroscopy) indicated a slight conformational change in BSA upon fosinopril interaction.  相似文献   

11.
Here, we have presented a green and facile strategy to fabricate nitrogen‐doped carbon dots (N‐CDs) and their applications for determination of chlortetracycline (CTC) and sulfasalazine (SSZ). The fluorescent N‐CDs, prepared by one‐step hydrothermal reaction of citric acid and l ‐arginine, manifested numerous excellent features containing strong blue fluorescence, good water‐solubility, narrow size distribution, and a high fluorescence quantum yield (QY) of 38.8%. Based on the fluorescence quenching effects, the as‐synthesized N‐CDs as a fluorescent nanosensor exhibited superior analytical performances for quantifying CTC and SSZ. The linear range for CTC was calculated to be from 0.85 to 20.38 μg ml?1 with a low detection limit of 0.078 μg ml?1. Meanwhile, the linear range for SSZ was estimated to be from 0.34 to 6.76 μg ml?1 with a low detection limit of 0.032 μg ml?1. Therefore, the N‐CDs hold admirable application potential for constructing a fluorescent sensor for pharmaceutical analysis.  相似文献   

12.
With recognition of the biological importance of hydrogen sulfide (H2S), we present a simple and effective fluorescent probe for H2S using a Tb3+ coordination polymer–Cu2+ compound (DPA/Tb/G–Cu2+). Dipicolinic acid (DPA) and guanosine (G) can coordinate with Tb3+ to form a macromolecular coordination polymer (DPA/Tb/G). DPA/Tb/G specifically binds to Cu2+ in the presence of coexisting cations, and obvious fluorescence quenching is observed. The quenched fluorescence can be exclusively recovered upon the addition of sulfide, which is measured in the mode of time‐resolved fluorescence. The fluorescence intensities of the DPA/Tb/G–Cu2+ compound enhance linearly with increasing sulfide concentrations from 1 to 30 μM. The detection limit for sulfide in aqueous solution is estimated to be 0.3 μM (at 3σ). The DPA/Tb/G–Cu2+ compound was successfully applied to sense H2S in human serum samples and exhibited a satisfactory result. It displays some desirable properties, such as fast detection procedure, high selectivity and excellent sensitivity. This method is very promising to be utilized for practical detection of H2S in biological and environmental samples.  相似文献   

13.
A simple and sensitive DNA‐stablized gold nanoparticle (AuNP)‐based chemiluminescent (CL) probe for detecting mercury ion (Hg2+) in aqueous solution has been developed. The CL strategy relies upon the catalytic activity of unmodified AuNPs on the luminol–H2O2 CL reaction, and the interaction of unmodified AuNPs with DNA. The unmodified AuNPs can effectively differentiate unstructured and folded DNA. The DNA desorbs from AuNPs in the presence of Hg2+, leading to the increase in CL signal. By rationally varying the number of thymine in single‐strand oligonucleotides, the detection range could be tuned. Employing single‐strand oligonucleotides with 14 thymine in the detecting system, a sensitive linear range for Hg2+ ions from 5.0 × 10–10 to 1.0 × 10–7 mol/L and a detection limit of 2.1 × 10–10 mol/L are obtained. Changing the number of thymine to 10 and 6, it leads to a narrow detection range but a high sensitivity. Besides, DNA‐based CL nanoprobes exhibit a remarkable selectivity for Hg2+ ions over a variety of competing metal ions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Core–shell structured quantum dot (QD)–silica fluorescent nanoparticles have attracted a great deal of attention due to the excellent optical properties of QDs and the stability of silica. In this study, core–shell structured CdTe/CdS@SiO2@CdTe@SiO2 fluorescent nanospheres were synthesized based on the Stöber method using multistep silica encapsulation. The second silica layer on the CdTe QDs maintained the optical stability of nanospheres and decreased adverse influences on the probe during subsequent processing. Red‐emissive CdTe/CdS QDs (630 nm) were used as a built‐in reference signal and green‐emissive CdTe QDs (550 nm) were used as a responding probe. The fluorescence of CdTe QDs was greatly quenched by added S2?, owing to a S2?‐induced change in the CdTe QDs surface state in the shell. Upon addition of Cd2+ to the S2?‐quenched CdTe/CdS@SiO2@CdTe@SiO2 system, the responding signal at 550 nm was dramatically restored, whereas the emission at 630 nm remained almost unchanged; this response could be used as a ratiometric ‘off–on’ fluorescent probe for the detection of Cd2+. The sensing mechanism was suggested to be: the newly formed CdS‐like cluster with a higher band gap facilitated exciton/hole recombination and effectively enhanced the fluorescence of the CdTe QDs. The proposed probe shows a highly sensitive and selective response to Cd2+ and has potential application in the detection of Cd2+ in environmental or biological samples.  相似文献   

15.
Polyunsaturated aldehydes (PUA) have recently been shown to induce reactive oxygen species (ROS) and possibly reactive nitrogen species (RNS, e.g., peroxynitrite) in the diatom Skeletonema marinoi (S. marinoi), which produces high amounts of PUA. We now are attempting to acquire better understanding of which reactive molecular species are involved in the oxidative response of S. marinoi to PUA. We used flow cytometry, the dye dihydrorhodamine 123 (DHR) as the main indicator of ROS (but which is also known to partially detect RNS), and different scavengers and inhibitors of both nitric oxide (NO) synthesis and superoxide dismutase activity (SOD). Both the scavengers Tempol (for ROS) and uric acid (UA, for peroxynitrite) induced a lower DHR‐derived green fluorescence in S. marinoi cells exposed to the PUA, suggesting that both reactive species were produced. When PUA‐exposed S. marinoi cells were treated with the NO scavenger 2‐4‐carboxyphenyl‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide (cPTIO), an opposite response was observed, with an increase in DHR‐derived green fluorescence. A higher DHR‐derived green fluorescence was also observed in the presence of sodium tungstate (ST), an inhibitor of NO production via nitrate reductase. In addition, two different SOD inhibitors, 2‐methoxyestradiol (2ME) and sodium diethyldithiocarbamate trihydrate (DETC), had an effect, with DETC inducing the strongest inhibition after 20 min. These results indicate the involvement of O2? generation and SOD activity in H2O2 formation (with downstream ROS generation dependent from H2O2) in response to PUA exposure. This is relevant as it refines the biological impact of PUA and identifies the specific molecules involved in the response. It is speculated that in PUA‐exposed S. marinoi cells, beyond a certain threshold of PUA, the intracellular antioxidant system is no longer able to cope with the excess of ROS, thus resulting in the observed accumulation of both O2?? and H2O2. This might be particularly relevant for population dynamics at sea, during blooms, when cell lysis increases and PUA are released. It can be envisioned that in the final stages of blooms, higher local PUA concentrations accumulate, which in turn induces intracellular ROS generation that ultimately leads to cell death and bloom decay.  相似文献   

16.
Sensitive detection of doxorubicin (DOX) is critical for clinical theranostics. A novel ratiometric fluorescence strategy based on the inner filter effect (IFE) has been established for the sensitive detection of DOX by designing a ratiometric fluorescence probe. In the presence of DOX, the fluorescence intensity of copper nanoclusters (CuNCs) at 485 nm decreases, and the fluorescence intensity of carbon dots at 560 nm increases. Therefore, DOX can be quantitatively detected by measuring the ratio of the fluorescence intensities at 560 and 485 nm (F560/F485). The F560/F485 ratio exhibits a linear correlation with the DOX concentration in the range from 1.0 × 10−8 M to 1.0 × 10−4 M with the detection limit of 3.7 nM. Furthermore, this method was also successfully applied to the analysis of DOX in human plasma samples, affording an effective platform for drug safety management.  相似文献   

17.
The main purpose of this study was to develop an inexpensive, simple, rapid and sensitive chemiluminescence (CL) method for the determination of glutamine (Gln) using a flow‐injection (FI) system. Gln was found to strongly inhibit the CL signal of the luminol–H2O2–CuSO4 system in Na2B4O7 solution. A new FI‐CL method was developed for the determination of Gln. Parameters affecting the reproducibility and CL detection were optimized systematically. Under the optimized conditions, the corresponding linear regression equation was established over the range of 5.0 × 10?7 to 2.5 × 10?6 mol/L with the detection limit of 1.8 × 10?8 mol/L. The relative standard deviation was found to be 1.8% for 11 replicate determinations of 1.5 × 10?6 mol/L Gln. The proposed method has been satisfactorily applied for the determination of Gln in real samples (Marzulene‐s granules) with recoveries in the range of 98.7–108.6%. The minimum sampling rate was about 100 samples/h. The possible mechanism of this inhibitory CL was studied by fluorescence spectrophotometer and UV–vis spectrophotometer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Chemiluminescence (CL) on the time scale of microseconds to milliseconds from luminol solution after illumination of a 355 nm pulse laser is reported. It was found that the CL is the emission from 3‐aminophthalate ion (AP*). In CL decay after the pulse laser illumination, a peak was observed from about 200 to 30 µs depending on the laser power and the luminol concentration. It seemed that there was a fast and slow decay process; their kinetics were greatly dependent on the laser power and the luminol concentration. Dissolved oxygen was involved in the CL and played the same role on the whole time scale of microseconds to milliseconds. Involvement of reactive oxygen species such as H2O2, 1O2, O2?? and OH in the CL was examined by adding their scavengers. Experimental results suggested that the possibility of involvement of H2O2 and 1O2 in the CL was low. The CL in time periods less than 50 µs might be related to ?OH. The ?O2??‐induced CL increased with time after 50 µs and became dominant on the time scale of milliseconds. The CL was considered to be caused by both the photoionization and type I reaction mechanisms. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
To develop conducting organic polymers (COPs) as luminescent sensors for determination of toxic heavy metals, a new benzene sulfonic acid‐doped polypyrrole (PPy‐BSA) thin film was electrochemically prepared by cyclic voltammetry (CV) on flexible indium tin oxide (ITO) electrode in aqueous solution. PPy‐BSA film was characterized by FTIR spectrometry, X‐ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The optical properties of PPy‐BSA were investigated by ultraviolet (UV)‐visible absorption and fluorescence spectrometry in dimethylsulfoxide (DMSO) diluted solutions. PPy‐BSA fluorescence spectra were strongly quenched upon increasing copper(II) ion (Cu2+) and lead(II) ion (Pb2+) concentrations in aqueous medium, and linear Stern–Volmer relationships were obtained, which indicated the existence of a main dynamic fluorescence quenching mechanism. BSA‐PPy sensor showed a high sensitivity for detection of both metallic ions, Cu2+ and Pb2+, with very low limit of detection values of 3.1 and 18.0 nM, respectively. The proposed quenching‐fluorimetric sensor might be applied to the determination of traces of toxic heavy metallic ions in water samples.  相似文献   

20.
Melatonin and steroid hormones are cytochrome P450 (CYP or P450; EC 1.14.14.1) substrates that have antioxidant properties and mitochondrial protective activities. The mitochondrial intermembrane space (IMS) Cu,Zn-superoxide dismutase (SOD1) is activated after oxidative modification of its critical thiol moieties by superoxide anion (O2??). This study was aimed at investigating the potential association between the hormonal protective antioxidant actions in mitochondria and the regulation of IMS SOD1 activity. Melatonin, testosterone, dihydrotestosterone, estradiol, and vitamin D induced a sustained activation over time of SOD1 in intact mitochondria, showing a bell-shaped enzyme activation dose response with a threshold at 50 nM and a maximum effect at 1 μM concentration. Enzyme activation was not affected by furafylline, but it was inhibited by omeprazole, ketoconazole, and tiron, thereby supporting the occurrence of a mitochondrial P450 activity and O2?? requirements. Mitochondrial P450-dependent activation of IMS SOD1 prevented O2??-induced loss of aconitase activity in intact mitochondria respiring in State 3. Optimal protection of aconitase activity was observed at 0.1 μM P450 substrate concentration, evidencing a likely oxidative effect on the mitochondrial matrix by higher substrate concentrations. Likewise, enzyme activation mediated by mitochondrial P450 activity delayed CaCl2-induced loss of transmembrane potential and decreased cytochrome c release. Omeprazole and ketoconazole abrogated both protecting mitochondrial functions promoted by melatonin and steroid hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号