首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To quantitatively assess the risk of contamination by Pneumocystis depending on the degree of immunosuppression (ID) of the exposed rat hosts, we developed an animal model, where rats went through different doses of dexamethasone. Then, natural and aerial transmission of Pneumocystis carinii occurred during cohousing of the rats undergoing gradual ID levels (receivers) with nude rats developing pneumocystosis (seeders). Following contact between receiver and seeder rats, the P. carinii burden of receiver rats was determined by toluidine blue ortho staining and by qPCR targeting the dhfr monocopy gene of this fungus. In this rat model, the level of circulating CD4+ and CD8+ T lymphocytes remained significantly stable and different for each dose of dexamethasone tested, thus reaching the goal of a new stable and gradual ID rat model. In addition, an inverse relationship between the P. carinii burden and the level of circulating CD4+ or CD8+ T lymphocytes was evidenced. This rat model may be used to study other opportunistic pathogens or even co‐infections in a context of gradual ID.  相似文献   

2.
Recently, we reported the properties of CD31‐expressing cells in healthy individuals. However, the characteristics of CD31‐expressing cells derived from coronary artery disease (CAD) patients remain unknown. This study aimed to investigate the relationship between circulating CD31+ cells and CAD as well as their biological characteristics. Analysis with flow cytometry revealed that CD31+ cells (C‐CD31) from the peripheral blood (PB) of CAD patients exhibited low levels of T‐cell marker and high levels of macrophage marker compared with the PB‐CD31+ cells from healthy individuals (H‐CD31). In addition, the expression levels of multiple pro‐angiogenic and chemokine genes were significantly down‐regulated in C‐CD31. However, inflammatory gene IL‐1α was highly up‐regulated in C‐CD31. Patients with unstable angina (UA) had significantly more CD31+ cells in the PB than healthy control group (P < 0.001). Moreover, there were significant correlations between the number of CD31+ cells and cardiovascular (CV) disease activity (R = 0.318, P = 0.006) and the number of diseased coronaries (R = 0.312, P = 0.005). For the diagnostic category of UA, the area under curve was 0.803 (P < 0.001). In conclusion, C‐CD31 have impaired angiogenic potential and the number of circulating CD31+ cells were correlated with CV risk. These findings may contribute to the understanding of the pathogenesis of CAD.  相似文献   

3.
The aim of present study was to evaluate CD4+/CD8+ ratio and CD4+CD25hiFoxP3+ Tregs in GV patients with reference to their effect on disease onset and progression. Flow cytometry was used for determination of CD4+/CD8+ ratio and Tregs in 82 patients and 50 controls. CD8+ T‐cell counts were significantly higher in GV patients as compared with controls (p = 0.003). Active GV patients showed higher CD8+ T‐cell counts compared with stable GV patients (p = 0.001). The CD4+/CD8+ ratio decreased significantly in patients as compared with controls (p = 0.001). Moreover, the ratio in active GV patients significantly lowered as compared with stable GV patients (p = 0.002). Significant decrease in Treg cell percentage and counts in GV patients was observed compared with controls (p = 0.009, p = 0.008) with significant reduction in FoxP3 expression (p = 0.024). Treg cell percentage and counts were significantly decreased in active GV patients compared with stable GV patients (p = 0.007, p = 0.002). Our results suggest that an imbalance of CD4+/CD8+ ratio and natural Tregs in frequency and function might be involved in the T‐cell mediated pathogenesis of GV and its progression.  相似文献   

4.
The effects of environmental lead on the immune system of young children were assessed by determining the peripheral blood lymphocytes CD3+, CD4+, CD8+, B(CD19+) counts, and natural killer (CD16+ CD56+) cells in 35 preschool children whose mean blood lead level was 140.6 μg/L. The results were compared to an age- and sex-matched control group with a mean blood lead level of 64.3 μg/L. Compared to the controls, a significant reduction in the percentage of CD4+ cells and a significant increase of CD8+ cells were seen in the high-lead group. The negative correlation between the percentage of CD4+ cells and blood lead levels was found to be significant (p<0.01). These results suggest that exposure to environmental lead might result in alterations in the immune function of young children.  相似文献   

5.
Human umbilical CD34+ immature haematopoietic cells were rapidly and efficiently obtained from light density MNC (mononuclear cells) by MACS (magnetic cell sorting). An ex vivo expanded population of CD34+ was cultured in serum‐free medium supplemented with cytokines FL (flt3 ligand), SCF (stem cell factor) and TPO (thrombopoietin) in order to obtain a sufficient number of CD34+ cells. CD34+ cells expanded from cord blood for 7 days were demonstrated to increase in the absolute number of CD34+ cells by 5.12±2.47‐fold (mean±S.D., n=3). Flow cytometric analysis demonstrated that the percentage of CD34 antigen expression after expansion of the culture was 97.81±1.07%, whereas it was 69.39±10.37% in none‐expanded CD34+ cells (mean±S.D., n=3), thus defining a system that allowed extensive amplification accompanied by no maturation. MTs (metallothioneins), low molecular weight, cysteine‐rich metal‐binding proteins, exhibit various functions, including metal detoxification and homoeostasis. We here examined the expression pattern of functional members of the MT gene family in immature CD34+ cells and compared it with more mature CD34? cells in order to strengthen the proposed function of MT in differentiation. Cells were cultured in RPMI 1640 medium, with or without different zinc supplements for 24 h. Relative quantitative expression of MT isogenes in the mature CD34? cells was higher than in the immature CD34+ cells. IHC (immunohistochemical staining) revealed an increased MT protein biosynthesis in CD34? cells, greater than in CD34+ cells. Therefore, the role of MT in differentiation of human haematopoietic progenitor cells from human cord blood is reported for the first time.  相似文献   

6.
Myocardial infarction (MI) is a major condition causing heart failure (HF). After MI, the renin angiotensin system (RAS) and its signalling octapeptide angiotensin II (Ang II) interferes with cardiac injury/repair via the AT1 and AT2 receptors (AT1R, AT2R). Our study aimed at deciphering the mechanisms underlying the link between RAS and cellular components of the immune response relying on a rodent model of HF as well as HF patients. Flow cytometric analyses showed an increase in the expression of CD4+ AT2R+ cells in the rat heart and spleen post‐infarction, but a reduction in the peripheral blood. The latter was also observed in HF patients. The frequency of rat CD4+ AT2R+ T cells in circulating blood, post‐infarcted heart and spleen represented 3.8 ± 0.4%, 23.2 ± 2.7% and 22.6 ± 2.6% of the CD4+ cells. CD4+ AT2R+ T cells within blood CD4+ T cells were reduced from 2.6 ± 0.2% in healthy controls to 1.7 ± 0.4% in patients. Moreover, we characterized CD4+ AT2R+ T cells which expressed regulatory FoxP3, secreted interleukin‐10 and other inflammatory‐related cytokines. Furthermore, intramyocardial injection of MI‐induced splenic CD4+ AT2R+ T cells into recipient rats with MI led to reduced infarct size and improved cardiac performance. We defined CD4+ AT2R+ cells as a T cell subset improving heart function post‐MI corresponding with reduced infarction size in a rat MI‐model. Our results indicate CD4+ AT2R+ cells as a promising population for regenerative therapy, via myocardial transplantation, pharmacological AT2R activation or a combination thereof.  相似文献   

7.
Two separate, independent experiments were conducted to evaluate the effect of 60 Hz linearly polarized, sinusoidal, continuous-wave magnetic fields (MFs) on immune system performances in rats born and raised under these fields. Each experiment lasted for 6 weeks. A total of 96 animals, divided into groups of eight animals each, was exposed for 20 h/day to MFs of different intensities, i.e., sham (<0.02 μT) and 2, 20, 200, and 2000 μT. Another group of animals, which was housed in a separate room, served as cage controls (CC). These animals were exposed to ambient MFs of <0.02 μT. The following immune responses were evaluated in both experiments: total T and B cells; CD4+ and CD8+ subpopulation and natural killer (NK) cell activity in splenic lymphocytes; hydrogen peroxide (H2O2), nitrous oxide (NO), and tumor necrosis factor (TNF) production by peritoneal macrophages. Our results show that a 6 week exposure to MFs induced a significant decrease in the number of CD5+, CD4+, and CD8+ populations. These changes were even more significant in rats that were exposed to fields of 2000 μT. A lower, although significant, decrease in the CD5+ population was also observed in animals that were exposed to fields of 200 μT. Linear regression analysis demonstrated a dose effect with MF intensity. B lymphocyte (Ig+ cell) populations also showed a 12% decrease (P < .05) in the groups that were exposed to fields of 20 and 200 μT. However, these results were not significant, and no relation with MF intensities could be demonstrated. In contrast, evaluation of splenic NK cell activity revealed a 50% increase (P < .05) in animals that were exposed to fields of 2000 μT. No significant results were obtained from the evaluation of TNF activity and NO secretion in peritoneal macrophages. Phorbol 12-myristate 13-acetate (PMA)-stimulated and net H2O2 productions for a minor subpopulation of peritoneal cells showed positive dose-response correlations by linear regression analysis. Taken together, our results suggest that an in vivo exposure of rats for 6 weeks to 60 Hz MFs can induce significant immunological perturbations on effector cells of both natural and adaptive immunity in a dose-dependent fashion. © 1996 Wiley-Liss, Inc.  相似文献   

8.
Immunologic abnormalities of natural killer (NK) cells and T cells play a role in the pathogenesis of systemic lupus erythematosus (SLE). CD161 is expressed on most of the NK cells and on some T cells. The quantities of CD161-expressing cells and expression levels of CD161 were analyzed in T cells and NK cells from patients with SLE compared with normal controls. The expression of CD161 on NK cells, NKT cells, CD4+ T cells, and CD8+ T cells in peripheral blood from patients with inactive SLE and active SLE, and from the normal controls group were determined using flow cytometry. The frequency and expression level of CD161 in the lymphocyte subsets and its relationship with the quantity of regulatory T cells, anti-double stranded DNA antibody, and the titer of antinuclear antibody were evaluated. Both the percentages of the CD161+ subpopulation and the mean fluorescence intensities (MFIs) of CD161 in CD8+ T cells and NKT cells decreased significantly in SLE patients compared with normal controls (P < .001). The CD161 expression in CD8+ T cells and NKT cells also decreased in the anti-dsDNA (+) group (P < .05). The counts of Treg cells were lower in SLE patients and were weakly correlated with the percentage of the CD161 subpopulation (r = 0.229, P = .016) and the MFIs of CD161 expression in CD8+ T cells (r = .232, P = .014). The frequencies and levels of CD161 expression on CD8+ T cells and NKT cells were reduced in SLE patients, suggesting that an abnormality of these cells was related to the pathogenesis of SLE.  相似文献   

9.
Abstract: Immunophenotype analysis was used to characterize circulating lymphocyte subset levels in both rhesus monkeys that were chronically infected with SIVmac239 and in those that had resisted SIVmac239 infection as a result of prior vaccination with an attenuated SIV strain. Alterations in T, NK, and B cell subsets were compared with those previously identified in humans chronically infected with HIV [8–11, 14, 22]. The well-known decrease in CD4+ cell levels was observed in the SIVmac239-infected animals. However, these animals had relatively little activation of circulating CD8+ T cells as compared with uninfected monkeys. This contrasts with chronically HIV-infected humans who have substantial activation of circulating CD8+ cells as evidenced by elevated HLA-DR and CD38 antigen expression on CD8+ cells as well as substantially increased percentages and numbers of total CD8+ cells. NK cells of the SIVmac239-infected animals, on the other hand, demonstrated the same changes recently described in HIV-infected humans, i.e., a decrease in circulating percentages and a decreased amount of FcRIII (CD 16). B cell percentages were markedly increased in the SIVmac239-infected animals, a finding also noted in some children with HIV infection but not in HIV-infected adults. SIVΔnef-vaccinated/SIVmac239-challenged animals showed none of the immune alterations found in the SIVmac239-infected monkeys, providing further confirmation of lack of SIV disease in these vaccinated animals.  相似文献   

10.
Aging is associated with impaired vaccine efficacy and increased susceptibility to infectious and malignant diseases. CD8+ T‐cells are key players in the immune response against pathogens and tumors. In aged mice, the dwindling naïve CD8+ T‐cell compartment is thought to compromise the induction of de novo immune responses, but no experimental evidence is yet available in humans. Here, we used an original in vitro assay based on an accelerated dendritic cell coculture system in unfractioned peripheral blood mononuclear cells to examine CD8+ T‐cell priming efficacy in human volunteers. Using this approach, we report that old individuals consistently mount quantitatively and qualitatively impaired de novo CD8+ T‐cell responses specific for a model antigen. Reduced CD8+ T‐cell priming capacity in vitro was further associated with poor primary immune responsiveness in vivo. This immune deficit likely arises as a consequence of intrinsic cellular defects and a reduction in the size of the naïve CD8+ T‐cell pool. Collectively, these findings provide new insights into the cellular immune insufficiencies that accompany human aging.  相似文献   

11.
T cell expression of NKRs can trigger or inhibit cell‐mediated cytotoxicity. However, few studies on T lymphocyte NKR expression in HIV infection exist. Here, we examined the expression patterns of NKG2D, NKG2A, and KIR3DL1 on CD8+ and CD3+CD8? cells by multicolor flow cytometry in groups of patients with HIV, AIDS or HAART‐treated AIDS, as well as HIV‐negative normal controls. Individual analysis of KIR3DL1 on CD3+CD8+ or CD3+CD8? cells revealed no significant differences among any of the groups (P > 0.05). In contrast, the percentage of NKG2A+NKG2D?CD8+ T cells was higher in the AIDS group than in the HIV‐negative normal control group (P < 0.01). Meanwhile, the prevalence of NKG2D+NKG2A?CD8+T cells was lower in the AIDS group than in HIV‐negative normal controls (P < 0.001). Similar results were also observed for the percentage of NKG2A+NKG2D? on CD3+CD8?cells. However, in contrast to CD8+ T cells, the frequencies of NKG2D+NKG2A? on CD3+CD8? cells were higher in AIDS and HIV patients than in HIV‐negative normal controls (P < 0.01, P < 0.05, respectively). The percentage of NKG2A+NKG2D?CD8+ T cells was negatively correlated with CD4+ T cell counts (r=?0.499, P < 0.01), while the percentage of NKG2D+NKG2A?CD8+ T cells was positively correlated with CD4+ T cell counts (r= 0.494, P < 0.01). The percentage of NKG2D+NKG2A?CD3+CD8? T cells was also positively correlated with viral load (r= 0.527, P < 0.01) and negatively correlated with CD4+ T cell counts (r=?0.397, P < 0.05). Finally, HAART treatment reversed the changes in NKR expression caused by HIV infection. These results indicate that the expression of NKRs on T cells may be correlated with HIV disease progression.  相似文献   

12.
We reported that LEC rats are genetically deficient in the development of thymic CD4+8? cells and that this defect is caused by bone marrow (BM)-derived stem cells. To determine which BM-derived cells are responsible for the arrest of T-cell development in LEC rats, fetal thymuses of LEC rats, or LEA rats which bear the same major histocompatibility complex (MHC) as LEC rats but are immunologically normal, were engrafted under the kidney capsule of severe combined immunodeficiency (SCID) mice (LEC-TG and LEA-TG mice, respectively). We then examined the differentiation of T cells and their immunological functions in the SCID mice. A large number of rat-derived CD4+ T cells appeared in the peripheral blood, lymph nodes (LN) and spleens in LEC-TG mice. Furthermore, the peripheral LN cells in LEC-TG mice appeared to be functional. These cells produced IL-2 upon Con A stimulation, whereas LN cells from LEC rats produced no IL-2 in the same conditions. Thymopoiesis was observed at 3 weeks in LEC-TG as well as LEA-TG mice. The distribution of thymocyte subsets with respect to CD4 and CD8 expression in LEC-TG mice closely resembled that of LEA rat thymus and that in LEA-TG mice, suggesting that normal T-cell differentiation occurred in LEC-TG mice. The results indicated that BM-derived progenitor T cells of LEC rats could differentiate to functional CD4+ T cells.  相似文献   

13.
The number of circulating progenitor cells increases during the period of hematopoietic recovery following myeloablative therapy. These progenitor cells were used for autologous transplantation in order to reconstitute hematopoiesis. As an indicator of the circulating progenitor cells, the number of granulocyte-macrophage colony forming units (CFU-GM), which is measured by means of a long-term cell culture, has been widely used. Recently, a cell surface marker, CD34, which can easily be measured by means of flowcytometry, was found to represent immature hematopoietic progenitor cells, which are very close to stem cells. Therefore, the relationship between the number of CD34 positive cells (CD34+ cells) and the number of CFU-GM in the peripheral blood following chemotherapy was studied in 9 patients selected to undergo autotransplantation. The number of peripheral blood CD34+ cells was found to be significantly correlated with that of CFU-GM (r = 0.81). When four out of 9 patients received recombinant human granulocyte-colony stimulating factor (rG-CSF) administration, a significant increase in the release of peripheral blood CD34+ cells as well as peripheral blood CFU-GM was observed (P<0.01). Thus, the measurement of CD34+ cells is useful for predicting the number of circulating CFU-GM.  相似文献   

14.
Controversial results have been published on the immune response to cigarette smoking while the effects of exposure to environmental tobacco smoke (ETS) have not yet been reported. In a controlled study, acute effects of smoking and of a high environmental exposure to ETS on immunological parameters have been investigated. The study consisted of four experimental days, two control and two exposure days. On control days, 1 and 3, smokers (n=5) and nonsmokers (n=5) sat in an unventilated 45 m3 room for 8 h. On the exposure days, 2 and 4, each of the smokers smoked 24 cigarettes in 8 h, while the nonsmokers were exposed to the ETS generated by the smoking volunteers. Blood was drawn before and after each exposure session on all four experimental days for dosimetry of tobacco smoke exposure and determination of the immune response. Flow cytometry using monoclonal antibodies was used to determine CD3+ cells (whole T cells), CD19+ cells (B lymphocytes), CD16+ and CD56+ cells (natural killer cells), CD4+ cells (T-helper cells), CD8+ cells (T-suppressor cells), the CD4+/CD8+ (helper/supressor ratio), and Fc receptors on granulocytes. Serum was analyzed for soluble CD14 receptors (scD14), interleukin 1, interleukin 6 and prostaglandin E2 (PGE2). Functional stimulation assays were performed to determine the basal and induced level of reactive oxygen intermediate (ROI) production by polymorphic neutrophils. Exposure to tobacco smoke in both groups was confirmed by dosimetry of carboxyhemoglobin, plasma nicotine, and cotinine levels. In comparison to nonsmokers, smokers had elevated granulocyte cell counts, increased CD16+ and CD56+ cell levels and decreased CD3+ and CD19+ levels. Acute smoking, but not exposure to ETS, resulted in a slight decrease in the number of CD19+ cells and an increase in the number of granulocytes; the latter was restricted to one subject. Acute smoking and exposure to high experimental concentrations of ETS resulted in a slight increase in CD16+ and CD56+ cells. None of the changes determined in immunological parameters after either acute smoking or exposure to ETS reached statistical significance. Serum sCD14, cytokine and PGE2, functional stimulation of in vitro ROI production, and changes in Fc receptors were not affected by acute smoking or exposure to ETS. Although no clear guidelines exist to assess immunotoxicity in man, our data do not favor immunosuppression and the possibility of increased risk of infection in nonsmokers exposed to ETS under real-life conditions.Abbreviations AM alveolar macrophage - BALF bronchoalveolar lavage fluid - CO carbon monoxide - CO2 carbon dioxide - COHb carboxyhemoglobin - ELISA enzyme linked immunoassay - ETS environmental tobacco smoke - FITC fluorescein isothiocyanate - IL interleukin - MHC major histocompatibility complex - NK natural killer cell - NO nitrogen oxide - NO2 nitrogen dioxide - PBS phosphate-buffered saline - PE phycoerythrin - PGE2 prostaglandin E2 - PMA phorbol-12-myristate-13-acetate - PMN polymorphic neutrophils - RIA radioimmunoassay - ROI reactive oxygen intermediates - RSP respirable suspended particles - sCD14 soluble CD14 receptor  相似文献   

15.
Endothelial progenitor cells (EPCs) are a group of heterogeneous cells in bone marrow (BM) and blood. Ischaemia increases reactive oxygen species (ROS) production that regulates EPC number and function. The present study was conducted to determine if ischaemia‐induced ROS differentially regulated individual EPC subpopulations using a mouse model concomitantly overexpressing superoxide dismutase (SOD)1, SOD3 and glutathione peroxidase. Limb ischaemia was induced by femoral artery ligation in male transgenic mice with their wild‐type littermate as control. BM and blood cells were collected for EPCs analysis and mononuclear cell intracellular ROS production, apoptosis and proliferation at baseline, day 3 and day 21 after ischaemia. Cells positive for c‐Kit+/CD31+ or Sca‐1+/Flk‐1+ or CD34+/CD133+ or CD34+/Flk‐1+ were identified as EPCs. ischaemia significantly increased ROS production and cell apoptosis and decreased proliferation of circulating and BM mononuclear cells and increased BM and circulating EPCs levels. Overexpression of triple antioxidant enzymes effectively prevented ischaemia‐induced ROS production with significantly decreased cell apoptosis and preserved proliferation and significantly increased circulating EPCs level without significant changes in BM EPC populations, associated with enhanced recovery of blood flow and function of the ischemic limb. These data suggested that ischaemia‐induced ROS was differentially involved in the regulation of circulating EPC population.  相似文献   

16.
FoxP3 + CD4 + regulatory T cells (Tregs) are important mediators of peripheral immune tolerance, acting via multiple mechanisms to suppress cellular immunity including antitumor responses. Although therapeutic strategies have been proposed to deplete Tregs in patients with breast cancer and other malignancies, dynamic changes in the Treg compartment as a function of stage and treatment of breast cancer remain poorly understood. Here, we evaluated peripheral blood CD4+ T cells and FoxP3+ CD4+ T cells from 45 patients with early or late stage breast cancer and compared percentages, absolute counts, and Treg function to those from healthy volunteers (HV) of comparable age. Patients having completed adjuvant chemotherapy and patients with metastatic cancer exhibited significantly lower absolute CD4 counts and significantly higher percentages of FoxP3+ CD4+ T cells. In contrast, the absolute counts of circulating FoxP3+ CD4+ T cells did not differ significantly among early stage patients, late stage patients, or HV. Functionally, FoxP3+ CD4+ T cells from all donor groups similarly expressed CTLA-4 and failed to secrete IFN-γ in response to stimulation. Thus, although Tregs comprise an increased percentage of circulating CD4+ T cells in patients with metastatic breast cancer and patients in remission after completing the adjuvant chemotherapy, the systemic Treg pool, as measured by absolute counts, appears relatively constant regardless of disease stage or treatment status. Total CD4+ T cell counts are not constant, however, suggesting that homeostatic mechanisms, or susceptibility to cytotoxic or malignant insults, fundamentally differ for regulatory and non-regulatory CD4+ T cells.  相似文献   

17.
CD8+ T cells can express NK-associated receptors (NKRs) that may regulate their cytolytic function. We have characterized the expression of several NKRs on peripheral blood CD8+ T cells from melanoma patients and compared them to age-matched healthy donors. The analysis performed includes HLA class I specific receptors (KIRs, LILRB1 and CD94/NKG2) and other NK receptors like CD57, CD56 and CD16. Melanoma patients showed a higher variability in the expression of NKRs on circulating CD8+ T cells than age-matched healthy donors. NKR expression on CD8+ T cells from melanoma patients showed a significant increase of KIR2DL2/L3/S2 (mAb gl183), CD244, CD57, CD56 and CD16. We have also found an increase of CD8+ CD28 CD27 T cells in melanoma patients. This subset represents terminally differentiated effector cells expressing CD244 and high levels of perforin. The expression of NKRs was also mainly restricted to this T cell subset. Altogether, circulating CD8+ T cells from melanoma patients display a distinct phenotype characterized by downregulation of costimulatory molecules and higher expression of NKRs. We suggest that the increased expression of NKRs on T cells may contribute to the final outcome of the immune response against melanoma both stimulating or inhibiting activation and differentiation to effector cells. Blocking inhibitory receptor function and enhancing activating receptors may represent new strategies with therapeutic potential against melanoma.  相似文献   

18.
Although it is widely believed that non‐segmental vitiligo (NSV) results from the autoimmune destruction of melanocytes, a clear understanding of defects in immune tolerance, which mediate this uncontrolled self‐reactivity, is still lacking. In the present study, we systemically evaluated circulating regulatory T (Treg) cells, including CD4+CD25+FoxP3+ Treg cells and invariant natural killer T (iNKT) cells, as well as naïve and memory CD4+ and CD8+ T cells and their cytokine production, in a cohort of 43 progressive NSV patients with race‐, gender‐, and age‐matched healthy controls. We found that the general immunophenotypes of CD4+ and CD8+ T cells and the percentage of CD4+CD25+FoxP3+ Tregs were comparable between NSV and healthy controls. However, percentages of peripheral iNKT cells were significantly decreased in NSV patients compared to that in healthy controls. Our data confirm the previous notion that the percentage of peripheral CD4+CD25+FoxP3+ Tregs remains unaltered in NSV and suggests the involvement of defective iNKT cells in the pathogenesis of NSV.  相似文献   

19.

Background

Cigarette smoke is a major risk factor for chronic obstructive pulmonary disease (COPD), an inflammatory lung disorder. COPD is characterized by an increase in CD8+ T cells within the central and peripheral airways. We hypothesized that the CD8+ T cells in COPD patients have increased Toll-like receptor (TLR) expression compared to control subjects due to the exposure of cigarette smoke in the airways.

Methods

Endobronchial biopsies and peripheral blood were obtained from COPD patients and control subjects. TLR4 and TLR9 expression was assessed by immunostaining of lung tissue and flow cytometry of the peripheral blood. CD8+ T cells isolated from peripheral blood were treated with or without cigarette smoke condensate (CSC) as well as TLR4 and TLR9 inhibitors. PCR and western blotting were used to determine TLR4 and TLR9 expression, while cytokine secretion from these cells was detected using electrochemiluminescence technology.

Results

No difference was observed in the overall expression of TLR4 and TLR9 in the lung tissue and peripheral blood of COPD patients compared to control subjects. However, COPD patients had increased TLR4 and TLR9 expression on lung CD8+ T cells. Exposure of CD8+ T cells to CSC resulted in an increase of TLR4 and TLR9 protein expression. CSC exposure also caused the activation of CD8+ T cells, resulting in the production of IL-1β, IL-6, IL-10, IL-12p70, TNFα and IFNγ. Furthermore, inhibition of TLR4 or TLR9 significantly attenuated the production of TNFα and IL-10.

Conclusions

Our results demonstrate increased expression of TLR4 and TLR9 on lung CD8+ T cells in COPD. CD8+ T cells exposed to CSC increased TLR4 and TLR9 levels and increased cytokine production. These results provide a new perspective on the role of CD8+ T cells in COPD.  相似文献   

20.
摘要 目的:探讨传染性单核细胞增多症(IM)患儿外周血T细胞活化分子CD38和人类白细胞抗原DR(HLA-DR)表达水平的临床意义。方法:采用流式细胞术分别检测45例IM患儿急性期和恢复期的活化分子CD38和HLA-DR在T细胞的表达水平,并与30例健康体检儿童进行对比。分析IM患儿急性期CD38和HLA-DR在T细胞的表达水平与EB病毒载量、肝功能指标、外周血异型淋巴细胞比例、淋巴细胞计数的相关性,并采用ROC曲线分析CD8+CD38+T和CD8+HLA-DR+T细胞百分比的诊断效能。结果:与对照组比较,IM急性期患儿的CD38和HLA-DR在T细胞的表达水平显著升高(P<0.05)。CD8+CD38+T、CD8+HLA-DR+T细胞百分比分别与EBV-DNA、ALT、AST、LDH、异型淋巴细胞百分比、淋巴细胞计数呈正相关(P<0.05),与白蛋白(ALB)呈负相关(P<0.05);CD4+CD38+T、CD4+HLA-DR+T细胞百分比与上述指标无显著相关性(P均>0.05)。IM恢复期CD38和HLA-DR在T细胞的表达水平较急性期明显降低(P<0.05)。ROC曲线分析CD8+CD38+T、CD8+HLA-DR+T细胞百分比显示诊断儿童IM的AUC值分别为0.931和0.993,特异度均为100%,灵敏度分别为88.89 %和93.33 %。结论:流式法检测CD38和HLA-DR在T细胞的变化有助于判断病情变化。外周血CD8+CD38+T、CD8+HLA-DR+T细胞百分比不仅能反映出IM急性期肝功能损伤严重程度,还可作为儿童IM的流式诊断指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号