首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Peng Du  Jae Su Yu 《Luminescence》2017,32(8):1504-1510
A series of Sm3+‐activated Sr3La(VO4)3 phosphors were synthesized by a facile sol‐gel method. X‐ray diffraction patterns and photoluminescence (PL)/cathodoluminescence (CL) spectra as well as PL decay curves were employed to characterize the obtained samples. Upon 402 nm light excitation, the characteristic emissions of Sm3+ ions corresponding to 4G5/26HJ transitions were observed in all the as‐prepared products. The PL emission intensity was increased with increase in Sm3+ ion concentration, while concentration quenching occurred when the doping concentration was over 4 mol%. The non‐radiative energy transfer mechanism for concentration quenching of Sm3+ ions was dominated by dipole–dipole interaction and the critical distance was around 21.59 Å. Furthermore, temperature‐dependent PL emission spectra revealed that the obtained phosphors possessed good thermal stability with an activation energy of 0.19 eV. In addition, the CL spectra of the samples were almost the same as the PL spectra, and the CL emission intensity showed a tendency to increase with increase in accelerating voltage and filament current. These results suggest that the Sm3+‐activated Sr3La(VO4)3 phosphors with good color coordinates, high color purity and superior thermal stability may be a potential candidate for applications in white light‐emitting diodes and field‐emission displays as red‐emitting phosphors.  相似文献   

2.
    
Yttrium aluminate (Y3A5O12) was doped with different rare earth ions (i.e. Gd3+, Ce3+, Eu3+ and/or Tb3+) in order to obtain phosphors (YAG:RE) with general formula,Y3‐x‐aGdxREaAl5O12 (x = 0; 1.485; 2.97 and a = 0.03). The synthesis of the phosphor samples was done using the simultaneous addition of reagents technique. This study reveals new aspects regarding the influence of different activator ions on the morpho‐structural and luminescent characteristics of garnet type phosphor. All YAG:RE phosphors are well crystallized powders containing a cubic‐Y3Al5O12 phase as major component along with monoclinic‐Y4Al2O9 and orthorhombic‐YAlO3 phases as the impurity. The crystallites dimensions of YAG:RE phosphors vary between 38 nm and 88 nm, while the unit cell slowly increase as the ionic radius of the activator increases. Under UV excitation, YAG:Ce exhibits yellow emission due to electron transition in Ce3+ from the 5d level to the ground state levels (2F5/2, 2F7/2). The emission intensity of Ce3+ is enhanced in the presence of the Tb3+ ions and is decreased in the presence of Eu3+ ions due to some radiative or non‐radiative processes that take place between activator ions. By varying the rare earth ions, the emission colour can be modulated from green to white and red. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
    
A series of Eu2+‐, Sm3+‐ and Eu2+/Sm3+‐doped SrZn2(PO4)2 samples were synthesized using a solid‐state reaction. SrZn2(PO4)2:Eu2+ presented a broad emission band due to 4f65d–4f7 transition of the Eu2+ ion. The spectra of SrZn2(PO4)2:Sm sintered in air and H2/N2 were identical in every aspect, except for a very small difference in intensity. A Eu2+–Sm3+ energy transfer scheme was proposed to realize the sensitization of Sm3+ ion emission by Eu2+ ions, and UV‐convertible Sm3+‐activated red phosphor was obtained in SrZn2(PO4)2:Eu2+, Sm3+. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
    
The upconversion photoluminescence of Ho3+ ion sensitized by Yb3+ ion in Ho3+/Yb3+codoped Gd2O3 nanocrystals with and without Li+ is investigated in this paper. Strong fluorescence in the green (534–570 nm) and red (635–674 nm) regions of the spectrum has been observed, arising from the 5F4/5S25I8 and 5F55I8 transitions of Ho3+ ion, respectively. Yb3+ ion is considered to be a better sensitizer for catching enough pumping energy and transferring considerable energy to Ho3+ in the Ho3+/Yb3+system. The upconversion intensity emitted by Ho3+ is greatly enhanced when Li+ is added to the Ho3+/Yb3+ codoped Gd2O3 nanocrystals.  相似文献   

5.
    
The LiLa(MoO4)2:Sm3+ and LiLa(MoO4)2:Sm3+,Bi3+ phosphors were prepared using the citric-acid-fueled combustion method and the influence of concentrations of Bi3+ dopant on LiLa(MoO4)2:Sm3+ red luminescence was investigated. The LiLa(MoO4)2:Sm3+ and LiLa(MoO4)2:Sm3+,Bi3+ samples matched well with the scheelite structure and I41/a space group and did not detect structural changes. Under an excitation of 403 nm, the prepared LiLa(MoO4)2:Sm3+,Bi3+ phosphor was excited and produced orange-red emission. When compared with the LiLa(MoO4)2:Sm3+ phosphor, the LiLa(MoO4)2:Sm3+,Bi3+ phosphor exhibited enhanced fluorescence intensity because the Bi3+ dopant ions are doped as a sensitizer. The optimal doping concentrations of Sm3+ and Bi3+ were 5 and 1 mol%, respectively. Furthermore, the energy transfer from Bi3+ to Sm3+ is effective (3P14K11/2). Subsequently, the electrons in an unstable excited state were transferred to a stable ground state (4G5/26H5/2, 6H7/2, 6H9/2). The Commission Internationale de L'Eclairage (CIE) chromaticity coordinates of the optimized LiLa(MoO4)2:Sm3+,Bi3+ phosphor were situated in the orange-red region. The luminescence of the LiLa(MoO4)2:Sm3+,Bi3+ phosphor generated under near-ultraviolet (UV) irradiation could be used to produce a warm white light, indicating its possible applications in white light-emitting diodes.  相似文献   

6.
    
Ru Liu  Xigui Wang 《Luminescence》2020,35(1):114-119
Eu3+‐doped 6LaPO4–3La3PO7–2La7P3O18 red luminescent phosphors were synthesized by co‐deposition and high‐temperature solid‐state methods and its polyphase state was confirmed by X‐ray diffraction analysis. Transmission electron microscopy showed the grain morphology as a mixture of rods and spheres. Luminescence properties of the phosphor were investigated and its red emission parameters were evaluated as a function of Eu3+ concentration (3.00–6.00 mol%). Excitation spectra of 6LaPO4–3La3PO7–2La7P3O18:Eu3+ showed strong absorption bands at 280, 395, and 466 nm, while the luminescence spectra exhibited prominent red emission peak centred at 615 nm (5D07F2) in the red region. CIE chromaticity coordinates of the 6LaPO4–3La3PO7–2La7P3O18:5%Eu3+ phosphor were (0.668, 0.313) in the red region, and defined its potential application as a red phosphor.  相似文献   

7.
    
A new Na3Ca2(SO4)3F: Ce3+ phosphor synthesized by a solid state diffusion method is reported. The photoluminescence study showed a single high intensity emission peak at 307 nm wavelength when excited by UV light of wavelength 278 nm. An unresolved peak of comparatively less intensity was also observed at 357 nm along with the main peak. The characteristic emission of dopant Ce in Na3Ca2(SO4)3F phosphor clearly indicated that it resides in the host lattice in trivalent form. The emission peak can be attributed to 5d → 4f transition of rare earth Ce3+. The prepared sample is also characterized for its thermoluminescence properties. The TL glow curve of prepared sample showed a single broad peak at 147°C. The trapping parameters are also evaluated by Chen's method. The values of trap depth (E) and frequency factor (s) were found to be 0.64 ± 0.002 eV and 1.43 × 107 s–1 respectively. The study of PL and TL along with evaluation of trapping parameters has been undertaken and discussed for the first time. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
    
A series of red‐emitting phosphors Ca0.6Sr0.4–1.5x‐0.5yMo0.4 W0.6O4:EuxLiy (x = 0.02–0.12, y = 0–0.12) has been synthesized by a sol‐gel method. The effects of calcining temperature, concentrations of Li+ and Eu3+, and compensation ions on the luminescent properties were investigated. X‐ray diffraction and scanning electron microscopic results showed that as‐prepared phosphors were of single phase with several microns. The Li+ compensated compositions showed remarkably intense red emission at 619 nm. The emission intensity of the series reached maximum for compositions at x = 0.08 and y = 0.08 when the calcining temperature was 900 °C. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
    
A series of blue phosphors Ca1.98–xMxPO4Cl:0.02Eu2+ (M = Mg and Sr) with different values of x were synthesized using a high‐temperature solid‐state reaction. X‐Ray diffraction and photoluminescence measurements were used to study the phase structure and luminescence properties. Ca2PO4Cl:0.02Eu2+ exhibits a tunable emission intensity and color due to the incorporation of Sr2+ or Mg2+. The incorporation of Sr2+ reduces the luminescence intensity and results in a slight red shift in the emission band. The incorporation of Mg2+ results in enhanced emission and a clear blue shift in the emission band along with a tunable chromatic coordination. Under excitation at λ = 334 nm, the emission intensity of the Mg2+‐doped Ca2PO4Cl:0.02Eu2+ is found to be 250% that of Ca2PO4Cl:0.02Eu2+. The luminescence behaviors of the as‐synthesized phosphors are discussed according to the host crystal structure and site occupancy of Eu2+. The results indicate that Mg2+‐doped Ca2PO4Cl:Eu2+ is more applicable as a near‐UV‐convertible blue phosphor for white light‐emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
    
Two series of red‐emitting phosphors Sr‐Ba‐Mo‐W‐O:Eu,Sm and Sr‐Ba‐Mo‐W‐O:Eu have been synthesized by a sol–gel method. The effects of the chemical composition, concentrations of Sm3+ and Eu3+, the Sr2+/Ba2+ ratio, and the W6+/Mo6+ ratio on the luminescent properties were investigated. The as‐prepared phosphors were characterized by X‐ray diffraction and Raman spectra. Results showed that single phases of the two series were prepared. The compositions of Sr0.6Ba0.13Mo0.8 W0.2O4:Eu0.10Sm0.08 and Sr0.75Ba0.1Mo0.8 W0.2O4:Eu0.10 had the strongest luminescent intensity. The excitation spectra of Sm3+, Eu3+ co‐doped phosphors were broader and the strongest peak moved to 404 nm when compared with that of Eu3+ single‐doped phosphors. The luminescent intensity of the Sr0.6Ba0.13Mo0.8 W0.2O4:Eu0.10Sm0.08 at 618 nm were 2.8 times greater than that of Sr0.75Ba0.1Mo0.8 W0.2O4:Eu0.10. The luminescent intensity of Sr0.6Ba0.13Mo0.8 W0.2O4:Eu0.10Sm0.08 and Sr0.75Ba0.1Mo0.8 W0.2O4:Eu0.10 at 150 °C decreased to 56.8% and 50.3% of the initial value at room temperature, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
    
Modified synthesis and luminescence of Y2BaZnO5 phosphors activated with the rare earths (RE) Eu3+, Tb3+, Pr3+ and Sm3+ are reported. RE2BaZnO5 phosphors have attracted attention because of their interesting magnetic and optical properties; and are usually prepared using a two‐step solid‐state reaction. In the first step, carbonates or similar precursors are thoroughly mixed and heated at 900°C to decompose them to oxides. To eliminate the unwanted phases like BaRE2O4, the resulting powders are reheated at 1100°C for a long time. We prepared Y2BaZnO5 phosphors activated with various activators by replacing the first step with combustion synthesis. The photoluminescence results are presented. The photoluminescence results for Eu3+, Tb3+ and Pr3+ are in good agreement with the literature. However, photoluminescence emission from Sm3+ has not been documented previously. The excitation spectrum of Eu3+ is dominated by a charge transfer band around 261 nm, and an additional band around 238 nm is always present, irrespective of the type of activator. The presence of this band for all these different types of activators was interpreted as host absorption.  相似文献   

12.
    
Novel red‐emitting phosphors, Eu3+‐activated M7Sn(PO4)6 (M = Sr, Ba), were synthesized at 1200°C by conventional solid‐state reaction method. The luminescent properties of M7Sn(PO4)6:Eu3+ (M = Sr, Ba) phosphors were investigated, and the critical concentration of the activator (Eu3+) concentration were found to be 0.175 mol and 0.21 mol per formula unit for Sr7‐xSn(PO4)6:xEu3+ and Ba7‐xSn(PO4)6:xEu3+, respectively. These phosphors presented red luminescence under the excitation of 395 or 465 nm, perfectly matching with the emissions wavelength of near‐ultraviolet (UV) light‐emitting diodes (LEDs) and InGaN blue LED.  相似文献   

13.
    
A novel blue green‐emitting phosphor Ba2ZnSi2O7 : Eu2+ was prepared by combustion synthesis method and an efficient bluish green emission under from ultraviolet to visible light was observed. The emission spectrum shows a single intensive band centered at 503 nm, which corresponds to the 4f65d1 → 4f7 transition of Eu2+. The excitation spectrum is a broad band extending from 260 to 465 nm, which matches the emission of ultraviolet light‐emitting diodes (UV‐LEDs). The effect of doped Eu2+ concentration on the emission intensity of Ba2ZnSi2O7 : Eu2+ was also investigated. The result indicates that Ba2ZnSi2O7 : Eu2+ can be potentially useful as a UV radiation‐converting phosphor for white light‐emitting diodes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
    
Li WX  Chai WJ  Liu Y  Li YJ  Ren T  Zhang J  Ao BY 《Luminescence》2012,27(5):431-436
A series of rare earth complexes [(TbxTmy)L5(ClO4)2](ClO4)·3H2O (x:y = 1.000:0.000, 0.999:0.001, 0.995:0.005, 0.990:0.010, 0.950:0.050, 0.900:0.100, 0.800:0.200, 0.700:0.300; L = C6H5CH2SOCH2COC6H5) (Tb(III) luminescence ion; Tm(III) doped inert ion) were synthesized and characterized by elemental analysis, infrared spectra (IR) and 1H‐NMR. The photophysical properties of these complexes were studied in detail using ultraviolet absorption spectra, fluorescent spectra and lifetimes. The fluorescence spectra of complexes indicated that the fluorescence emission intensity was significantly enhanced by Tm(III). The complexes showed the best luminescence properties when the mole ratio Tb(III):Tm(III) was 0.990:0.010. The fluorescence intensity could be increased to 390%. Additionally, phosphorescence spectra and the luminescence mechanisms are discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Despite an ever increasing demand for reliable and cheap methods in the detection and quantification of microbes, surprisingly few investigations have explored or utilized the luminescence of rare earths in the microbial context, neither in conventional, that is, plating and microscopic imaging techniques, nor in advanced methods like fluorescence flow cytometry. We have thus investigated the potential of some rare earth complexes and hybrid materials for microbiological analysis. We found fairly simple procedures for internal staining (dyes inside the bacterial cell) and external staining (dyes on the cell surface). The present paper is predominantly relying on microscopic imaging and luminescence spectroscopies (excitation, emission, decay times), but also evaluates model rare earth microspheres to estimate an eventual rare earth based stain for a fast and sensitive bacteria enumeration with luminescence flow cytometry.  相似文献   

16.
    
Six novel 2‐(benzylcarbamoyl)phenyl derivatives were synthesized and characterized by 1H‐NMR, mass spectrometry, infrared spectra and elemental analysis. Their europium complexes were prepared and characterized by elemental analysis, EDTA titrimetric analysis, IR and UV spectra as well as molar conductivity measurements. The luminescence properties of these complexes were investigated and results show that 2‐(benzylcarbamoyl)phenyl derivatives possess high selectivity and good coordination with the europium ion. Complex Eu‐2‐(benzylcarbamoyl)phenyl‐2‐phenylacetate showed green luminescence that was emitted by the ligand of 2‐(benzylcarbamoyl)phenyl‐2‐phenylacetate, while other complexes showed the characteristic red luminescence of europium ion and also possessed high luminescence intensity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
    
This article focuses on the effect of monovalent cation doping on the optical properties of rare earth (RE = Eu3+, Tb3+) co-doped Ca14Zn6Al10O35 which has been synthesized by a low temperature combustion method. Crystalline phase of the Ca14Zn6Al10O35 phosphor was examined and confirmed by X-ray diffraction measurement. Under near-ultraviolet light excitation Eu3+-doped Ca14Zn6Al10O35 phosphor exhibit characterization of Eu3+ emission bands that are located at a maximum wavelength (λmax) of approximately 470 nm and other peaks centred at 593 nm and 615 nm, respectively. With Tb3+-doped Ca14Zn6Al10O35 phosphor showing a green emission band centred at 544 nm under near-ultraviolet range. Furthermore, we studied the energy transfer process in Eu3+/Tb3+pair and enhancement in photoluminescence (PL) intensity with doping different charge compensation. Here we obtained the optimum PL emission intensity of the phosphor in broad and intense visible spectral range which may be significant for the fabrication of white light emitting diodes (WLEDs).  相似文献   

18.
    
M5(PO4)3 F:Eu2+ (M = Ca and Ba) co‐doped with Ce3+ phosphors were successfully prepared by the combustion synthesis method. The introduction of co‐dopant (Ce3+) into the host enhanced the luminescent intensity of the M5(PO4)3 F:Eu2+ (M = Ca and Ba) efficiently. Previously, we have reported the synthesis and photoluminescence properties of same phosphors. The aim of this article is to report energy transfer mechanism between Ce3+?Eu2+ ions in M5(PO4)3 F:Eu2+ (M = Ca and Ba) phosphors, where Ce3+ ions act as sensitizers and Eu2+ ions act as activators. The M5(PO4)3 F:Eu2+ (M = Ca and Ba) co‐doped with Ce3+ phosphor exhibits great potential for use in white ultraviolet (UV) light‐emitting diode applications to serve as a single‐phased phosphor that can be pumped with near‐UV or UV light‐emitting diodes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
    
Chlorosulphate NaMgSO4Cl phosphor doped with Ce3+ and co‐doped by Dy3+ prepared by the wet chemical method was studied for its photoluminescence and thermoluminescence (TL) characteristics. The emission spectrum of Ce3+ shows dominant peaks at 346 nm (excitation 270 nm) due to 5d → 4f transition. Efficient energy transfer occurs from Ce3+ → Dy3+ ions. Dy3+ emission at 485 nm and 576 nm is due to 4 F9/26H15/2 and 4 F9/26H13/2 transitions of Dy3+ ion respectively. The TL glow curves of NaMgSO4Cl:Ce and Ce,Dy have been recorded for various concentrations at a heating rate of 2 °C/s irradiated by γ‐rays at a dose rate of 0.995 kGy/h for 1 Gy, which peaks at about 241 °C and 247‐312 °C respectively. Further, in changing the concentration level, the general structure of the intensity is found to increase. The main property of this phosphor is its sensitivity even for low concentrations of rare earth ions and low γ‐ray dose. There is still scope for higher doses of γ‐radiation. The phosphor presented may be used as a lamp phosphor as well as for TL studies. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
    
The afterglow properties of long afterglow luminescent materials are greatly affected by their defects, which are distributed on the grain surface. Increasing the exposed surface area is an important method to improve the afterglow performance. In this research, long rod-shaped long afterglow materials Sr2MgSi2O7:Eu2+,Dy3+ were prepared using the hydrothermal-coprecipitation method. When the reaction time reached 96 h, the length of the afterglow materials could grow to 2 mm, and the sintering temperature was just 1150°C. The emission spectra of all obtained samples upon excitation at 397 nm had a maximum of 465 nm, which belonged to the representative transition of Eu2+. The initial brightness was 1.35 cd/m2. The afterglow time could reach 19 h, giving a good afterglow performance. The research on this kind of material has essential significance in the exploration of luminescence mechanisms and their applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号