首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article reports on the optical properties of 0.5% mol of Sm3+, Dy3+ ion‐doped B2O3‐TeO2‐Li2O‐AlF3 (LiAlFBT) glasses. The glass samples were characterized by optical absorption and emission spectra. Judd‐Ofelt theory was applied to analyze the optical absorption spectra and calculate the intensity parameters and radiative properties of the emission transitions. The emission spectra of Sm3+ and Dy3+:LiAlFBT glasses showed a bright reddish‐orange emission at 598 nm (4G5/26H7/2) and an intense yellow emission at 574 nm (4F9/26H13/2), respectively. Full width at half maximum (FWHM), stimulated emission cross section, gain bandwidth and optical gain values were also calculated to extend the applications of the Sm3+ and Dy3+:LiAlFBT glasses. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Lithium borosilicate glass composite (SiO2–Li2CO3–H3BO3) doped with various concentrations of Sm2O3 (0–0.7 mole %) was prepared using the melt quenching method. The investigated thermoluminescence (TL) characteristics of the prepared system revealed that the highest TL response was obtained for this glass composite at 0.05 mol% Sm2O3. In this study, the 0.05 mol% Sm2O3‐doped lithium borosilicate glass composite was subjected to detailed dosimetric investigation in terms of its annealing condition, dose–response, and minimum detectable dose. The reproducibility of the response, thermal characteristics, and optical fading were also studied. The obtained results showed that the prepared glass composite had a linear dose–response over the wide gamma dose range 2Gy to 2 kGy, as well as reasonable thermal fading and excellent reproducibility. These attributes render the composite under investigation promising for utilization in radiation detection.  相似文献   

3.
BaO‐B2O3‐P2O5 glasses doped with a fixed concentration of Tb3+ ions and varying concentrations of Al2O3 were synthesized, and the influence of the Al3+ ion concentration on the luminescence efficiency of the green emission of Tb3+ ions was investigated. The optical absorption, excitation, luminescence spectra and fluorescence decay curves of these glasses were recorded at ambient temperature. The emission spectra of terbium ions when excited at 393 nm exhibited two main groups of bands, corresponding to 5D3 → 7Fj (blue region) and 5D4 → 7Fj (green region). From these spectra, the radiative parameters, viz., spontaneous emission probability A, total emission probability AT, radiative lifetime τ and fluorescent branching ratio β, of different transitions originating from the 5D4 level of Tb3+ ions were evaluated based on the Judd‐Ofelt theory. A clear increase in the quantum efficiency and luminescence of the green emission of Tb3+ ions corresponding to 5D4 → 7F5 transition is observed with increases in the concentration of Al2O3 up to 3.0 mol%. The improvement in emission is attributed to the de‐clustering of terbium ions by Al3+ ions and also to the possible admixing of wave functions of opposite parities. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Single crystals of KCl doped with Ce3+,Tb3+ were grown using the Bridgeman–Stockbarger technique. Thermoluminescence (TL), optical absorption, photoluminescence (PL), photo‐stimulated luminescence (PSL), and thermal‐stimulated luminescence (TSL) properties were studied after γ‐ray irradiation at room temperature. The glow curve of the γ‐ray‐irradiated crystal exhibits three peaks at 420, 470 and 525 K. F‐Light bleaching (560 nm) leads to a drastic change in the TL glow curve. The optical absorption measurements indicate that F‐ and V‐centres are formed in the crystal during γ‐ray irradiation. It was attempted to incorporate a broad band of cerium activator into the narrow band of terbium in the KCl host without a reduction in the emission intensity. Cerium co‐doped KCl:Tb crystals showed broad band emission due to the d–f transition of cerium and a reduction in the intensity of the emission peak due to 5D37Fj (j = 3, 4) transition of terbium, when excited at 330 nm. These results support that energy transfer occurs from cerium to terbium in the KCl host. Co‐doping Ce3+ ions greatly intensified the excitation peak at 339 nm for the emission at 400 nm of Tb3+. The emission due to Tb3+ ions was confirmed by PSL and TSL spectra. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A series of Sr1‐x‐yCayMoO4:xSm3+ (0 ≤ x ≤ 7 mol% and 0 ≤ y < 1) phosphors was synthesized by a conventional solid‐state reaction method in air, and their structural and spectroscopic properties were investigated. The optimal doping concentration of Sm3+ in SrMoO4:Sm3+ phosphor is 5 mol%. Under excitation with 275 nm, in Sr1‐x‐yCayMoO4:xSm3+ (0 ≤ x ≤ 7 mol% and 0 ≤ y < 1) phosphors, the emission band of the host was found to overlap with the excitation bands peaking at ~500 nm of Sm3+ ion, and the energy transfer from MoO42? group to Sm3+ ion can also be observed. The International Commission on Illumination (CIE) chromaticity coordinates of Sr0.95‐yCayMoO4:0.05Sm3+ phosphors with excitation 275 nm varied systematically from an orange (0.4961, 0.3761) (y = 0) to a white color (0.33, 0.3442) (y = 0.95) with increasing calcium oxide (CaO) concentration. However, Sr0.95‐yCayMoO4:0.05Sm3+ phosphors with excitation at 404 nm only showed red emission and the energy transfer between MoO42? group to Sm3+ ion was not observed. The complex mechanisms of luminescence and energy transfer are discussed by energy level diagrams of MoO42? group and Sm3+ ion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
This paper focuses on an optical study of a Tb3+/Bi3+‐doped and Sm3+/La3+‐ doped Ca2Al2SiO7 phosphor synthesized using combustion methods. Here, Ca2Al2SiO7:Sm3+ showed a red emission band under visible light excitation but, when it co‐doped with La3+ ions, the emission intensity was further enhanced. Ca2Al2SiO7:Tb3+ shows the characteristic green emission band under near‐ultraviolet light excitation wavelengths, co‐doping with Bi3+ ions produced enhanced photoluminescence intensity with better colour tunable properties. The phosphor exhibited better phase purity and crystallinity, confirmed by X‐ray diffraction. Binding energies of Ca(2p), Al(2p), Si(2p), O(1s) were studied using X‐ray photoelectron spectroscopy. The reported phosphor may be a promising visible light excited red phosphor for light‐emitting diodes and energy conversion devices.  相似文献   

7.
In the present study, the effect of bismuth oxide (Bi2O3) content on the structural and optical properties of 0.5Sm3+‐doped phosphate glass and the effect of concentration on structural and optical properties of Sm3+‐doped bismuth phosphate (BiP) glass were studied. Structural characterization was accomplished using X‐ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) spectroscopy and 31P nuclear magnetic resonance (NMR) spectroscopy. Optical properties were studied using absorption, photoluminescence and decay measurements. Using optical absorption spectra, Judd–Ofelt parameters were derived to determine the local structure and bonding in the vicinity of Sm3+ ions. The emission spectra of Sm3+‐doped BiP glass showed two intense emission bands, 4G5/26H7/2 (orange) and 4G5/26H9/2 (red) for which the stimulated emission cross‐sections (σe) and branching ratios (β) were found to be higher. The quantum efficiencies were also calculated from decay measurements recorded for the 4G5/2 level of Sm3+ ions. The suitable combination of Bi2O3 (10 mol%) and Sm3+ (0.5 mol%) ions in these glasses acted as an efficient lasing material and might be suitable for the development of visible orange‐red photonic materials.  相似文献   

8.
Rare earth ions (Eu3+ or Tb3+)‐activated Ca3 Ga2 Si3O12 (CaGaSi) phosphors were synthesized by using a sol–gel method. Photoluminescence spectra of Eu3+:CaGaSi phosphors exhibited five emission bands at 578, 592, 612, 652 and 701 nm, which were assigned to the transitions (5D07F0, 7F1, 7F2, 7F3 and 7F4), respectively, with an excitation wavelength of λexci = 392 nm. Among these, the transition 5D07F2 (612 nm) displayed bright red emission. In the case of Tb3+:CaGaSi phosphors, four emission bands were observed at 488 (5D47F6), 543 (5D47F5), 584 (5D47F4) and 614 nm (5D47F3) from the measurement of PL spectra with λexci = 376 nm. Among these, the transition 5D47F5 at 543 nm displayed bright green emission. The structure and morphology of the phosphors were studied from the measurements of X‐ray diffraction (XRD), scanning electron microscopy (SEM) and energy‐dispersive X‐ray analysis (EDAX) results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Different concentrations of Sm2O3-doped lead borosilicate glass were synthesized using a melt–quenching method and their characteristics were analyzed using X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy absorption, emission, and decay curves. From the XRD patterns, the noncrystalline nature of titled glass was confirmed. The structural groups that existed in the host glass were observed from FTIR spectra. The Judd–Ofelt (JO) intensity parameters and oscillator strengths were derived from the absorption spectra and compared with various reported systems. The excitation luminescence levels of the Sm3+ ion radiative properties were further computed using the JO intensity parameters. Effective bandwidth, emission cross-sections (σe), and several lasing properties were assessed from emission spectra and compared with other reported glass systems. The decay curves of the 4G5/2 level of Sm3+ ion were also been measured and examined. Additionally, the colour coordinates of the Commission International de I'Éclairage chromaticity were assessed. The titled glass were suitable for visible reddish orange luminescence devices based on all obtained parameters.  相似文献   

10.
Single crystals of KCl and KBr singly and doubly doped with Tb3+ and Ce3+, respectively, were successfully grown using the Bridgeman technique. This work reports the comparative luminescence behavior and optical absorption characterization of non‐irradiated and γ‐ray‐irradiated single crystals of these materials. The existing defect and the defect created by γ‐ray irradiation were monitored by optical absorption spectra. The excitation and emission spectra of these materials were measured at room temperature with a spectrofluorometer and the pertaining results were compared. The F‐band comparison was made when bleached with F‐light for 2 mins. The trap‐level changes in KCl and KBr when it is singly and doubly doped enabled us to draw conclusions on the nature of the defect and on the recombination processes involved.  相似文献   

11.
A series of novel red‐emitting Sm3+‐doped bismuth silicate phosphors, Bi4Si3O12:xSm3+ (0.01 ≤ x ≤ 0.06), were prepared via the sol–gel route. The phase of the synthesized samples calcinated at 800 °C is isostructural with Bi4Si3O12 according to X‐ray diffraction results. Under excitation with 405 nm light, some typical peaks of Sm3+ ions centered at 566, 609, 655 and 715 nm are found in the emission spectra of the Sm3+‐doped Bi4Si3O12 phosphors. The strongest peak located at 609 nm is due to 4G5/26H7/2 transition of Sm3+. The luminescence intensity reaches its maximum value when the Sm3+ ion content is 4 mol%. The results suggest that Bi4Si3O12:Sm3+ may be a potential red phosphor for white light‐emitting diodes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
13.
Pyrophosphates K2AEP2O7 (AE = Ca, Sr) prepared by the classical solid‐state technique and activated with Ce3+ are described. Intense emission was observed in K2AEP2O7 (AE = Ca, Sr). The effect of Mn2+ co‐doping was studied. The broad emission peak of Mn2+ was observed at 534 nm in K2SrP2O7:Ce3+ and at 539 nm in K2CaP2O7:Ce3+, Mn2+. Mn2+ emission was greatly enhanced by addition of the sensitizer Ce3+ due to efficient energy transfer from Ce3+ to Mn2+. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Eu(2+), Dy(3+) and Tb(3+) co-doped strontium aluminate phosphor with high brightness and long afterglow was synthesized by a combustion method, using urea as a reducer. The properties of SrAl(2)O(4):Eu(2+),Dy(3+),Tb(3+) phosphor with a series of initiating combustion temperatures, urea concentrations and boric acid molar fractions were investigated. The sample at initiating combustion temperature of 600 degrees C exhibited an intense emission peak at 513 nm, in which the phosphor existed as a single-phase monoclinic structure. The experimental results showed that the optimum ratio of urea is 2.0 times higher than theoretical quantities and that the suitable molar fraction of H(3)BO(3) is 0.08. The average particle size of the phosphor was 50-80 nm and its luminescence properties were studied systematically. Compared with SrAl(2)O(4):Eu(2+),Dy(3+) phosphor, the initial luminescence brightness improved from 2.50 candela (cd)/m(2) to 3.55 cd/m(2) and the long afterglow time was prolonged from 1290 s to 2743 s.  相似文献   

15.
Incorporating the Gd3+ rare earth ion in the LiCaBO3 host lattice resulted in narrow‐band UV‐B emission peaking at 315 nm, with excitation at 274 nm. The LiCaBO3:Gd3+ phosphor was synthesized via the solid‐state diffusion method. The structural, morphological and luminescence properties of this phosphor were characterized by X‐ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and photoluminescence (PL) spectroscopy. Electron paramagnetic resonance (EPR) characterization of the as‐prepared phosphors is also reported here. XRD studies confirmed the crystal formation and phase purity of the prepared phosphors. A series of different dopant concentrations was synthesized and the concentration‐quenching effect was studied. Critical energy transfer distance between activator ions was determined and the mechanism governing the concentration quenching is also reported in this paper. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
17.
A novel multi-color emitting Na2YMg2V3O12:Sm3+ phosphor was synthesized using a solid-state reaction, and its crystal structure, luminescence properties, and thermal stability were studied. Charge transfer within the (VO4)3− groups in the Na2YMg2V3O12 host led to a broad emission band between 400 and 700 nm, with a maximum at 530 nm. The Na2Y1−xMg2V3O12:xSm3+ phosphors exhibited a multi-color emission band under 365 nm near-ultraviolet (near-UV) light, consisting of the green emission of the (VO4)3− groups and sharp emission peaks at 570 nm (yellow), 618 nm (orange), 657 nm (red), and 714 nm (deep red) of Sm3+ ions. The optimal doping concentration of Sm3+ ions was found to be 0.05 mol%, and the dipole–dipole (d–d) interaction was primarily responsible for the concentration quenching phenomenon. Using the acquired Na2YMg2V3O12:Sm3+ phosphors, commercial BaMgAl10O17:Eu2+ blue phosphor, and a near-UV light-emitting diode (LED) chip, a white-LED lamp was designed and packaged. It produced bright neutral white light, manifesting a CIE coordinate of (0.314, 0.373), a color rendering index (CRI) of 84.9, and a correlated color temperature (CCT) of 6377 K. These findings indicate the potential of Na2YMg2V3O12:Sm3+ phosphor to be used as a multi-color component for solid-state illumination.  相似文献   

18.
Er3+‐doped germanate glasses with superior thermal stability were prepared. Judd–Ofelt intensity parameters and important spectroscopic properties were discussed in detail. Upon 800 nm and 980 nm LD pumping, 2.7 µm fluorescence characteristics were investigated and it was found that the effective 2.7 µm emission bandwidth can reach to 101.79 nm in prepared glasses. The tunability of the 2.7 µm emission band can be realized by adjusting the Er3+ content. Moreover, a high‐emission cross‐section (11.09 ×10‐21 cm2), large gain bandwidth (772.30 ×10‐28 cm3) and gain coefficient (6.72 cm‐1) were obtained in the prepared sample. Hence, Er3+‐doped germanate glass might be a promising mid‐infrared material for tunable amplifiers or lasers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Adequate regulation of endolymphatic pH is essential for maintaining inner ear function. The Na+–H+ exchanger (NHE) is a major determinant of intracellular pH (pHi), and facilitates Na+ and fluid absorption in various epithelia. We determined the functional and molecular expression of NHEs in cultured human endolymphatic sac (ES) epithelial cells and examined the effect of IFN‐γ on NHE function. Serial cultures of human ES epithelial cells were generated from tissue samples. The molecular expression of NHE1, ‐2, and ‐3 isoforms was determined by real‐time RT‐PCR. The functional activity of NHE isoforms was measured microfluorometrically using a pH‐sensitive fluorescent dye, 2′,7′‐bis(carbonylethyl)‐5(6)‐carboxyfluorescein (BCECF), and a NHE‐inhibitor, 3‐methylsulfonyl‐4‐piperidinobenzoyl guanidine methanesulfonate (HOE694). NHE1, ‐2, and ‐3 mRNAs were expressed in human ES epithelial cells. Functional activity of NHE1 and ‐2 was confirmed in the luminal membrane of ES epithelial cells by sequentially suppressing Na+‐dependent pHi recovery from intracellular acidification using different concentrations of HOE694. Treatment with IFN‐γ (50 nM for 24 h) suppressed mRNA expression of NHE1 and ‐2. IFN‐γ also suppressed functional activity of both NHE1 and ‐2 in the luminal membrane of ES epithelial cells. This study shows that NHEs are expressed in cultured human ES epithelial cells and that treatment with IFN‐γ suppresses the expression and functional activity of NHE1 and ‐2. J. Cell. Biochem. 107: 965–972, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
A new system for the determination of nucleic acid by rare earth metallic porphyrin of [tetra‐(3‐methoxy‐4‐hydroxyphenyl)]–Tb3+ [T(3‐MO‐4HP)–Tb3+] porphyrin as fluorescence spectral probe has been developed in this paper. Nucleic acid can enhance the fluorescence intensity of the T(3‐MO‐4HP)–Tb3+ porphyrin in the presence of bis(2‐ethylhexyl)sulfosuccinate sodium salt(AOT) micelle. In pH 8.00 Tris–HCl buffer solution, under optimum conditions, the enhanced fluorescence intensity is in proportion to the concentration of nucleic acids in the range of 0.05–3.00 µg mL?1 for calf thymus DNA (ct DNA) and 0.03–4.80 µg mL?1 for fish sperm DNA(fs DNA). Their detection limits are 0.03 and 0.01 µg mL?1, respectively. In addition, the binding interaction mechanism between T(3‐MO‐4HP)–Tb3+ porphyrin and ct DNA is also investigated by resonance scattering and fluorescence spectra. The maximum binding number is calculated by molar ratio method. The new system can be used for the determination of nucleic acid in pig liver, yielding satisfactory results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号