首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic studies and large-scale sequencing experiments have revealed that the PIWI subfamily proteins and PIWI-interacting RNAs (piRNAs) play an important role in germ line development and transposon control. Biochemical studies in vitro have greatly contributed to the understanding of small interfering RNA (siRNA) and microRNA (miRNA) pathways. However, in vitro analyses of the piRNA pathway have been thus far quite challenging, because their expression is largely restricted to the germ line. Here we report that Bombyx mori ovary-derived cultured cell line, BmN4, endogenously expresses two PIWI subfamily proteins, silkworm Piwi (Siwi) and Ago3 (BmAgo3), and piRNAs associated with them. Siwi-bound piRNAs have a strong bias for uridine at their 5′ end and BmAgo3-bound piRNAs are enriched for adenine at position 10. In addition, Siwi preferentially binds antisense piRNAs, whereas BmAgo3 binds sense piRNAs. Moreover, we identified many pairs in which Siwi-bound antisense and BmAgo3-bound sense piRNAs are overlapped by precisely 10 nt at their 5′ ends. These signatures are known to be important for secondary piRNA biogenesis in other organisms. Taken together, BmN4 is a unique cell line in which both primary and secondary steps of piRNA biogenesis pathways are active. This cell line would provide useful tools for analysis of piRNA biogenesis and function.  相似文献   

2.
从少量培养细胞中同时提取微量蛋白和RNA的方法探讨   总被引:2,自引:0,他引:2  
为建立一项从少量培养细胞中同时提取RNA和蛋白质的技术 ,向 2~ 3× 10 5细胞中加入 1ml自制RNA提取试剂 ,RNA抽提后剩下的中下两相 ,用异丙醇、盐酸胍和无水乙醇抽提蛋白质 .同时用进口Tripure试剂、经典的异硫氰酸胍 苯酚 氯仿一步抽提RNA法和分子克隆实验手册裂解液制备蛋白质的方法 ,作为对照 .自制试剂提取的总RNA ,18S、2 8S清晰可见 ,2 8S比 18S带亮度强 2~ 3倍 ,带与带之间无拖尾现象 ,5S隐约可见 ,而且成功地进行了Northern印迹、RT PCR分析 ,与经典方法差异不大 ;用此法所提蛋白质 ,经SDS PAGE检测 ,蛋白分离效果很好 ,无杂质 ,且Western印迹检测Giα蛋白 ,可见一条清晰的特异带 ,与常规提取蛋白质 ,结果相似 .从微量细胞中同时提取的RNA和蛋白质 ,得率高、纯度好 ,具有化学完整性和生物学性质  相似文献   

3.
RNA silencing plays an important role in plants in defence against viruses. To overcome this defence, plant viruses encode suppressors of RNA silencing. The most common mode of silencing suppression is sequestration of double‐stranded RNAs involved in the antiviral silencing pathways. Viral suppressors can also overcome silencing responses through protein–protein interaction. The poleroviral P0 silencing suppressor protein targets ARGONAUTE (AGO) proteins for degradation. AGO proteins are the core component of the RNA‐induced silencing complex (RISC). We found that P0 does not interfere with the slicer activity of pre‐programmed siRNA/miRNA containing AGO1, but prevents de novo formation of siRNA/miRNA containing AGO1. We show that the AGO1 protein is part of a high‐molecular‐weight complex, suggesting the existence of a multi‐protein RISC in plants. We propose that P0 prevents RISC assembly by interacting with one of its protein components, thus inhibiting formation of siRNA/miRNA–RISC, and ultimately leading to AGO1 degradation. Our findings also suggest that siRNAs enhance the stability of co‐expressed AGO1 in both the presence and absence of P0.  相似文献   

4.
5.
Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) is a major pathogen of the economic insect silkworm, Bombyx mori. Virus‐encoded microRNAs (miRNAs) have been proven to play important roles in host–pathogen interactions. In this study we identified a BmCPV‐derived miRNA‐like 21 nt small RNA, BmCPV‐miR‐1, from the small RNA deep sequencing of BmCPV‐infected silkworm larvae by stem‐loop quantitative real‐time PCR (qPCR) and investigated its functions with qPCR and lentiviral expression systems. Bombyx mori inhibitor of apoptosis protein (BmIAP) gene was predicted by both target prediction software miRanda and Targetscan to be one of its target genes with a binding site for BmCPV‐miR‐1 at the 5′ untranslated region. It was found that the expression of BmCPV‐miR‐1 and its target gene BmIAP were both up‐regulated in BmCPV‐infected larvae. At the same time, it was confirmed that BmCPV‐miR‐1 could up‐regulate the expression of BmIAP gene in HEK293T cells with lentiviral expression systems and in BmN cells by transfecting mimics. Furthermore, BmCPV‐miR‐1 mimics could up‐regulate the expression level of BmIAP gene in midgut and fat body in the silkworm. In the midgut of BmCPV‐infected larvae, BmCPV‐miR‐1 mimics could be further up‐regulated and inhibitors could lower the virus‐mediated expression of BmIAP gene. With the viral genomic RNA segments S1 and S10 as indicators, BmCPV‐miR‐1 mimics could up‐regulate and inhibitors down‐regulate their replication in the infected silkworm. These results implied that BmCPV‐miR‐1 could inhibit cell apoptosis in the infected silkworm through up‐regulating BmIAP expression, providing the virus with a better cell circumstance for its replication.  相似文献   

6.
DEAD‐box RNA helicases are involved in many aspects of RNA metabolism and in diverse biological processes in plants. Arabidopsis thaliana mutants of two DEAD‐box RNA helicases, STRESS RESPONSE SUPPRESSOR1 (STRS1) and STRS2 were previously shown to exhibit tolerance to abiotic stresses and up‐regulated stress‐responsive gene expression. Here, we show that Arabidopsis STRS‐overexpressing lines displayed a less tolerant phenotype and reduced expression of stress‐induced genes confirming the STRSs as attenuators of Arabidopsis stress responses. GFP–STRS fusion proteins exhibited localization to the nucleolus, nucleoplasm and chromocenters and exhibited relocalization in response to abscisic acid (ABA) treatment and various stresses. This relocalization was reversed when stress treatments were removed. The STRS proteins displayed mis‐localization in specific gene‐silencing mutants and exhibited RNA‐dependent ATPase and RNA‐unwinding activities. In particular, STRS2 showed mis‐localization in three out of four mutants of the RNA‐directed DNA methylation (RdDM) pathway while STRS1 was mis‐localized in the hd2c mutant that is defective in histone deacetylase activity. Furthermore, heterochromatic RdDM target loci displayed reduced DNA methylation and increased expression in the strs mutants. Taken together, our findings suggest that the STRS proteins are involved in epigenetic silencing of gene expression to bring about suppression of the Arabidopsis stress response.  相似文献   

7.
8.
Age‐related cataract is among the most common chronic disorders of ageing and is the world's leading blinding disorder. Long non‐coding RNAs play important roles in several biological processes and complicated diseases. However, the role of lncRNAs in the setting of cataract is still unknown. Here, we extracted total RNAs from the transparent and age‐matched cataractous human lenses, and determined lncRNA expression profiles using microarray analysis. We found that 38 lncRNAs were differentially expressed between transparent and cataractous lenses. 17 of 20 differentially expressed lncRNAs were further verified by quantitative RT‐PCRs. One top abundant lncRNA, MIAT, was specifically up‐regulated both in the plasma fraction of whole blood and aqueous humor of cataract patients. MIAT knockdown could affect the proliferation, apoptosis and migration of Human lens epithelial cells (HLECs) upon oxidative stress. Posterior capsule opacification (PCO) is a common complication of cataract surgery, which is associated with abnormal production of inflammatory factors. MIAT knockdown could repress tumour necrosis factor‐α‐induced abnormal proliferation and migration of HLECs, suggesting a potential role of MIAT in PCO‐related pathological process. Moreover, we found that MIAT acted as a ceRNA, and formed a feedback loop with Akt and miR‐150‐5p to regulate HLEC function. Collectively, this study provides a novel insight into the pathogenesis of age‐related cataract.  相似文献   

9.
The triggering receptor expressed on myeloid cells (TREM) 2 is a member of the immunoglobulin superfamily of receptors and mediates signaling in immune cells via engagement of its co-receptor DNAX-activating protein of 12 kDa (DAP12). Homozygous mutations in TREM2 or DAP12 cause Nasu-Hakola disease, which is characterized by bone abnormalities and dementia. Recently, a variant of TREM2 has also been associated with an increased risk for Alzheimer disease. The selective expression of TREM2 on immune cells and its association with different forms of dementia indicate a contribution of this receptor in common pathways of neurodegeneration.  相似文献   

10.
Escherichia coli BL21 (DE3) is an excellent and widely used host for recombinant protein production. Many variant hosts were developed from BL21 (DE3), but improving the expression of specific proteins remains a major challenge in biotechnology. In this study, we found that when BL21 (DE3) overexpressed glucose dehydrogenase (GDH), a significant industrial enzyme, severe cell autolysis was induced. Subsequently, we observed this phenomenon in the expression of 10 other recombinant proteins. This precludes a further increase of the produced enzyme activity by extending the fermentation time, which is not conducive to the reduction of industrial enzyme production costs. Analysis of membrane structure and messenger RNA expression analysis showed that cells could underwent a form of programmed cell death (PCD) during the autolysis period. However, blocking three known PCD pathways in BL21 (DE3) did not completely alleviate autolysis completely. Consequently, we attempted to develop a strong expression host resistant to autolysis by controlling the speed of recombinant protein expression. To find a more suitable protein expression rate, the high‐ and low‐strength promoter lacUV5 and lac were shuffled and recombined to yield the promoter variants lacUV5‐1A and lac‐1G. The results showed that only one base in lac promoter needs to be changed, and the A at the +1 position was changed to a G, resulting in the improved host BL21 (DE3‐lac1G), which resistant to autolysis. As a consequence, the GDH activity at 43 h was greatly increased from 37.5 to 452.0 U/ml. In scale‐up fermentation, the new host was able to produce the model enzyme with a high rate of 89.55 U/ml/h at 43 h, compared to only 3 U/ml/h achieved using BL21 (DE3). Importantly, BL21 (DE3‐lac1G) also successfully improved the production of 10 other enzymes. The engineered E. coli strain constructed in this study conveniently optimizes recombinant protein overexpression by suppressing cell autolysis, and shows great potential for industrial applications.  相似文献   

11.
12.
Magnetotactic bacteria (MTB) are a group of Gram‐negative microorganisms that are able to sense and change their orientation in accordance with the geomagnetic field. This unique capability is due to the presence of a special suborganelle called the magnetosome, composed of either a magnetite or gregite crystal surrounded by a lipid membrane. MTB were first detected in 1975 and since then numerous efforts have been made to clarify the special mechanism of magnetosome formation at the molecular level. Magnetosome formation can be divided into several steps, beginning with vesicle invagination from the cell membrane, through protein sorting, followed by the combined steps of iron transportation, biomineralization, and the alignment of magnetosomes into a chain. The magnetosome‐chain enables the sensing of the magnetic field, and thus, allows the MTB to navigate. It is known that magnetosome formation is tightly controlled by a distinctive set of magnetosome‐associated proteins that are encoded mainly in a genomically conserved region within MTB called the magnetosome island (MAI). Most of these proteins were shown to have an impact on the magnetism of MTB. Here, we describe the process in which the magnetosome is formed with an emphasis on the different proteins that participate in each stage of the magnetosome formation scheme.  相似文献   

13.
14.
Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin‐converting enzyme (ACE) is the central component of endocrine and local tissue renin–angiotensin systems (RAS), which also regulate diverse aspects of whole‐body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations (healthy young UK men and Scandinavian diabetic patients) serum ACE (sACE) activity was significantly higher amongst UCP3‐55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P < 0·01) whilst increasing ACE expression within a physiological range (<1·8‐fold at 48 h; P < 0·01). Our findings suggest novel hypotheses. Firstly, cellular feedback regulation may occur between UCPs and ACE. Secondly, cellular UCP regulation of sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic syndrome with RAS antagonists and offer insight into the origins of cardiovascular disease in which UCPs and ACE both play a role.  相似文献   

15.
Berkhout B  Haasnoot J 《FEBS letters》2006,580(12):2896-2902
RNA interference (RNAi) plays a pivotal role in the regulation of gene expression to control cell development and differentiation. In plants, insects and nematodes RNAi also functions as an innate defence response against viruses. Similarly, there is accumulating evidence that RNAi functions as an antiviral defence mechanism in mammalian cells. Viruses have evolved highly sophisticated mechanisms for interacting with the host cell machinery, and recent evidence indicates that this also involves RNAi pathways. The cellular RNAi machinery can inhibit virus replication, but viruses may also exploit the RNAi machinery for their own replication. In addition, viruses can encode proteins or RNA molecules that suppress existing RNAi pathways or trigger the silencing of specific host genes. Besides the natural interplay between RNAi and viruses, induced RNAi provides an attractive therapy approach for the fight against human pathogenic viruses. Here, we summarize the latest news on virus-RNAi interactions and RNAi based antiviral therapy.  相似文献   

16.
Human ribonucleases (RNases) are members of a large superfamily of rapidly evolving homologous proteins. Upon completion of the human genome, eight catalytically active RNases (numbered 1-8) were identified. These structurally distinct RNases, characterized by their various catalytic differences on different RNA substrates, constitute a gene family that appears to be the sole vertebrate-specific enzyme family. Apart from digestion of dietary RNA, a wide variety of biological actions, including neurotoxicity, angiogenesis, immunosuppressivity, and anti-pathogen activity, have been recently reported for almost all members of the family. Recent evolutionary studies suggest that RNases started off in vertebrates as host defence or angiogenic proteins.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号