首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Ecological systems are always subjected to various environmental fluctuations. They evolve under these fluctuations and the resulting systems are robust against them. The diversity in ecological systems is also acquired through the evolution. How do the fluctuations affect the evolutionary processes? Do the fluctuations have direct impact on the species diversity in ecological systems? In the present paper, we investigate the relation between the environmental fluctuation and the evolution of species diversity with a mathematical model of evolutionary ecology. In the model, individual organisms compete for a single restricted resource and the temporal fluctuation in the resource supply is introduced as the environmental fluctuation. The evolutionary process is represented by the mutational change of genotypes which determines their resource utilization strategies. We found that when the environmental state is switched form static to fluctuating conditions, the initial closely related population distributed around the genotype adapted for the static environment is destabilized and divided into two groups in the genotype space; i.e., the evolutionary branching is induced by the environmental fluctuation. The consequent multiple species structures is evolutionary stable at the presence of the fluctuation. We perform the evolutionary invasion analysis for the phenomena and illustrate the mechanisms of the branchings. The results indicate a novel process of increasing the species diversity via evolutionary branching, and the analysis reveals the mechanisims of the branching preocess as the response to the environmental fluctuation. The robustness of the evolutionary process is also discussed.  相似文献   

2.
Theory suggests that evolutionary branching via disruptive selection may be a relatively common and powerful force driving phenotypic divergence. Here, we extend this theory to social insects, which have novel social axes of phenotypic diversification. Our model, built around turtle ant (Cephalotes) biology, is used to explore whether disruptive selection can drive the evolutionary branching of divergent colony phenotypes that include a novel soldier caste. Soldier evolution is a recurrent theme in social insect diversification that is exemplified in the turtle ants. We show that phenotypic mutants can gain competitive advantages that induce disruptive selection and subsequent branching. A soldier caste does not generally appear before branching, but can evolve from subsequent competition. The soldier caste then evolves in association with specialized resource preferences that maximize defensive performance. Overall, our model indicates that resource specialization may occur in the absence of morphological specialization, but that when morphological specialization evolves, it is always in association with resource specialization. This evolutionary coupling of ecological and morphological specialization is consistent with recent empirical evidence, but contrary to predictions of classical caste theory. Our model provides a new theoretical understanding of the ecology of caste evolution that explicitly considers the process of adaptive phenotypic divergence and diversification.  相似文献   

3.
Color vision of ancestral organisms of higher primates   总被引:4,自引:3,他引:1  
The color vision of mammals is controlled by photosensitive proteins called opsins. Most mammals have dichromatic color vision, but hominoids and Old World (OW) monkeys enjoy trichromatic vision, having the blue-, green-, and red-sensitive opsin genes. Most New World (NW) monkeys are either dichromatic or trichromatic, depending on the sex and genotype. Trichromacy in higher primates is believed to have evolved to facilitate the detection of yellow and red fruits against dappled foliage, but the process of evolutionary change from dichromacy to trichromacy is not well understood. Using the parsimony and the newly developed Bayesian methods, we inferred the amino acid sequences of opsins of ancestral organisms of higher primates. The results suggest that the ancestors of OW and NW monkeys lacked the green gene and that the green gene later evolved from the red gene. The fact that the red/green opsin gene has survived the long nocturnal stage of mammalian evolution and that it is under strong purifying selection in organisms that live in dark environments suggests that this gene has another important function in addition to color vision, probably the control of circadian rhythms.   相似文献   

4.
We show in this paper that the evolution of cannibalistic consumer populations can be a never ending story involving alternating levels of polymorphism. More precisely, we show that a monomorphic population can evolve toward high levels of cannibalism until it reaches a so-called branching point, where the population splits into two sub-populations characterized by different, but initially very close, cannibalistic traits. Then, the two traits coevolve until the more cannibalistic sub-population undergoes evolutionary extinction. Finally, the remaining population evolves back to the branching point, thus closing an evolutionary cycle. The model on which the study is based is purely deterministic and derived through the adaptive dynamics approach. Evolutionary dynamics are investigated through numerical bifurcation analysis, applied both to the ecological (resident-mutant) model and to the evolutionary model. The general conclusion emerging from this study is that branching-extinction evolutionary cycles can be present in wide ranges of environmental and demographic parameters, so that their detection is of crucial importance when studying evolutionary dynamics.  相似文献   

5.
We study the joint evolution of dispersal and specialization concerning resource usage in a mechanistically underpinned structured discrete-time metapopulation model. We show that dispersal significantly affects the evolution of specialization and that specialization is a key factor that determines the possibility of evolutionary branching in dispersal propensity. Allowing both dispersal propensity and specialization to evolve as a consequence of natural selection is necessary in order to understand the evolutionary dynamics. The joint evolution of dispersal and specialization forms a natural evolutionary path leading to the coexistence of generalists and specialists. We show that in this process, the number of different patch types and the resource distribution are essential.  相似文献   

6.
Animals are evolutionarily related to fungi and to the predominantly unicellular protozoan phylum Choanozoa, together known as opisthokonts. To establish the sequence of events when animals evolved from unicellular ancestors, and understand those key evolutionary transitions, we need to establish which choanozoans are most closely related to animals and also the evolutionary position of each choanozoan group within the opisthokont phylogenetic tree. Here we focus on Ministeria vibrans, a minute bacteria-eating cell with slender radiating tentacles. Single-gene trees suggested that it is either the closest unicellular relative of animals or else sister to choanoflagellates, traditionally considered likely animal ancestors. Sequencing thousands of Ministeria protein genes now reveals about 14 with domains of key significance for animal cell biology, including several previously unknown from deeply diverging Choanozoa, e.g. domains involved in hedgehog, Notch and tyrosine kinase signaling or cell adhesion (cadherin). Phylogenetic trees using 78 proteins show that Ministeria is not sister to animals or choanoflagellates (themselves sisters to animals), but to Capsaspora, another protozoan with thread-like (filose) tentacles. The Ministeria/Capsaspora clade (new class Filasterea) is sister to animals and choanoflagellates, these three groups forming a novel clade (filozoa) whose ancestor presumably evolved filose tentacles well before they aggregated as a periciliary collar in the choanoflagellate/sponge common ancestor. Our trees show ichthyosporean choanozoans as sisters to filozoa; a fusion between ubiquitin and ribosomal small subunit S30 protein genes unifies all holozoa (filozoa plus Ichthyosporea), being absent in earlier branching eukaryotes. Thus, several successive evolutionary innovations occurred among their unicellular closest relatives prior to the origin of the multicellular body-plan of animals.  相似文献   

7.

Background  

As genomes evolve after speciation, gene content, coding sequence, gene expression, and splicing all diverge with time from ancestors with close relatives. A minimum evolution general method for continuous character analysis in a phylogenetic perspective is presented that allows for reconstruction of ancestral character states and for measuring along branch evolution.  相似文献   

8.
In this paper, with the method of adaptive dynamics and geometric technique, we investigate the adaptive evolution of foraging-related phenotypic traits in a predator-prey community with trade-off structure. Specialization on one prey type is assumed to go at the expense of specialization on another. First, we identify the ecological and evolutionary conditions that allow for evolutionary branching in predator phenotype. Generally, if there is a small switching cost near the singular strategy, then this singular strategy is an evolutionary branching point, in which predator population will change from monomorphism to dimorphism. Second, we find that if the trade-off curve is globally convex, predator population eventually branches into two extreme specialists, each completely specializing on a particular prey species. However, if the trade-off curve is concave-convex-concave, after branching in predator phenotype, the two predator species will evolve to an evolutionarily stable dimorphism at which they can continue to coexist. The analysis reveals that an attractive dimorphism will always be evolutionarily stable and that no further branching is possible under this model.  相似文献   

9.
Evolutionary branching is the process whereby an initially monomorphic population evolves to a point where it undergoes disruptive selection and splits up into two phenotypically diverging lineages. We studied evolutionary branching in three models that are ecologically identical but that have different genetic systems. The first model is clonal, the second is sexual diploid with additive genetics on a single locus and the third is like the second but with an additional locus for mate choice. Evolutionary branching occurred under exactly the same ecological circumstances in all three models. After branching the evolutionary dynamics may be qualitatively different. In particular, in the diploid, sexual models there can be multiple evolutionary outcomes whereas in the corresponding clonal model there is only one. We showed that evolutionary branching favours the evolution of (partial) assortative mating and that this in turn effectively restores the results from the clonal model by rendering the alternative outcomes unreachable except for the one that also occurs in the clonal model. The evolution of assortative mating during evolutionary branching can be interpreted as the initial phase of sympatric speciation with phenotypic divergence and partial reproductive isolation.  相似文献   

10.
The human brain is a large and complex organ, setting us apart from other primates. It allows us to exhibit highly sophisticated cognitive and behavioral abilities. Therefore, our brain??s size and morphology are defining features of our species and our fossil ancestors and relatives. Endocasts, i.e., internal casts of the bony braincase, provide evidence about brain size and morphology in fossils. Based on endocasts, we know that our ancestors?? brains increased overall in size and underwent several reorganizational changes. However, it is difficult to relate evolutionary changes of size and shape of endocasts to evolutionary changes of cognition and behavior. We argue here that an understanding of the tempo and mode of brain development can help to interpret the evolution of our brain and the associated cognitive and behavioral changes. To do so, we review structural brain development, cognitive development, and ontogenetic changes of endocranial size and shape in living individuals on the one hand, and ontogenetic patterns (size increase and shape change) in fossil hominins and their evolutionary change on the other hand. Tightly integrating our knowledge on these different levels will be the key of future work on the evolution of human brain development.  相似文献   

11.
Mammals constitute a rich subject of study on evolution and development and provide model organisms for experimental investigations. They can serve to illustrate how ontogeny and phylogeny can be studied together and how the reconstruction of ancestors of our own evolutionary lineage can be approached. Likewise, mammals can be used to promote 'tree thinking' and can provide an organismal appreciation of evolutionary changes. This subject is suitable for the classroom and to the public at large given the interest and familiarity of people with mammals and their closest relatives. We present a simple exercise in which embryonic development is presented as a transformative process that can be observed, compared, and analyzed. In addition, we provide and discuss a freely available animation on organogenesis and life history evolution in mammals. An evolutionary tree can be the best tool to order and understand those transformations for different species. A simple exercise introduces the subject of changes in developmental timing or heterochrony and its importance in evolution. The developmental perspective is relevant in teaching and outreach efforts for the understanding of evolutionary theory today.  相似文献   

12.
13.
In order for mutualism to evolve, some force must align the interests of the two interacting partners. Vertical transmission can fill this role, but it is still unknown whether mutualism can be stable when vertically transmitted symbionts can evolve toward horizontal transmission. In this article, we investigate how symbionts' transmission mode and virulence should evolve, depending on the relationship between these two traits. We show that pathogens that reduce their host's fecundity can have more complex evolutionary dynamics than those that increase mortality. In some cases, runaway evolution of virulence can drive the host population extinct. In most cases, evolutionary branching results in the differentiation of avirulent, vertically transmitted symbionts from virulent, contagious pathogens. The population of symbionts then becomes polymorphic, and because the least virulent symbionts are the most frequent, the average virulence of symbionts is much lower than it would be in a monomorphic population. When the link between transmission and virulence results from correlated mutational changes and not from fixed constraints, vertically transmitted symbionts do not simply lose virulence; they evolve toward mutualism. We show that the force that stabilizes mutualism in such situations is the competition for transmission between symbionts.  相似文献   

14.
We study the evolution of dispersal rates in a two patch metapopulation model. The local dynamics in each patch are given by difference equations, which, together with the rate of dispersal between the patches, determine the ecological dynamics of the metapopulation. We assume that phenotypes are given by their dispersal rate. The evolutionary dynamics in phenotype space are determined by invasion exponents, which describe whether a mutant can invade a given resident population. If the resident metapopulation is at a stable equilibrium, then selection on dispersal rates is neutral if the population sizes in the two patches are the same, while selection drives dispersal rates to zero if the local abundances are different. With non-equilibrium metapopulation dynamics, non-zero dispersal rates can be maintained by selection. In this case, and if the patches are ecologically identical, dispersal rates always evolve to values which induce synchronized metapopulation dynamics. If the patches are ecologically different, evolutionary branching into two coexisting dispersal phenotypes can be observed. Such branching can happen repeatedly, leading to polymorphisms with more than two phenotypes. If there is a cost to dispersal, evolutionary cycling in phenotype space can occur due to the dependence of selection pressures on the ecological attractor of the resident population, or because phenotypic branching alternates with the extinction of one of the branches. Our results extend those of Holt and McPeek (1996), and suggest that phenotypic branching is an important evolutionary process. This process may be relevant for sympatric speciation.  相似文献   

15.
Today there is growing interest in material culture studies among a wide range of social and biological scientists. Researchers recognize that some concepts drawn from biology can be useful in understanding aspects of material culture evolution. Indeed, recent research has demonstrated that material culture can evolve in a branching manner (vertical transmission) similar to that of biological species. However, there are many complicating factors as well, particularly the human penchant for borrowing and resurrecting old ideas resulting in extensive blending and hybridization (lateral transmission). But blending and hybridization occurs in biology as well depending upon the nature and scale of interacting organisms. There is far more lateral information transfer between populations within species than between species (although there are always exceptions). History can also be expected to play a role in the degree to which evolution is affected by vertical versus lateral transmission processes. All things equal, we should expect branching to be most important early in the history of a cultural system since blending could not become significant without the early development of distinct lineages. This is different from most biological systems in the sense that the development of distinct lineages would significantly reduce (or prevent) opportunities for blending. We explore these ideas with an analysis of skateboard decks spanning the history of professional skateboards since 1963. We apply cladistic and networking models in order to develop an understanding of the degree by which skateboard evolution was affected by branching and blending/hybridization processes. The study is enhanced by a historical record that provides significant insight into the actual innovation and borrowing processes associated with skateboard evolution. Results confirm that both branching and blending played important roles and that branching was most critical early in professional skateboard history. The study offers the important implication that while cultural systems will typically incorporate far more horizontal transmission in the evolutionary process (particularly in later stages) than many biological systems, general principles governing early stage branching and disparity may apply to both.  相似文献   

16.
Zu J  Takeuchi Y 《Bio Systems》2012,109(2):192-202
In this paper, with the method of adaptive dynamics and critical function analysis, we investigate the evolutionary diversification of prey species. We assume that prey species can evolve safer strategies such that it can reduce the predation risk, but this has a cost in terms of its reproduction. First, by using the method of critical function analysis, we identify the general properties of trade-off functions that allow for continuously stable strategy and evolutionary branching in the prey strategy. It is found that if the trade-off curve is globally concave, then the evolutionarily singular strategy is continuously stable. However, if the trade-off curve is concave-convex-concave and the prey's sensitivity to crowding is not strong, then the evolutionarily singular strategy may be an evolutionary branching point, near which the resident and mutant prey can coexist and diverge in their strategies. Second, we find that after branching has occurred in the prey strategy, if the trade-off curve is concave-convex-concave, the prey population will eventually evolve into two different types, which can coexist on the long-term evolutionary timescale. The algebraical analysis reveals that an attractive dimorphism will always be evolutionarily stable and that no further branching is possible for the concave-convex-concave trade-off relationship.  相似文献   

17.
On the ecological timescale, two predator species with linear functional responses can stably coexist on two competing prey species. In this paper, with the methods of adaptive dynamics and critical function analysis, we investigate under what conditions such a coexistence is also evolutionarily stable, and whether the two predator species may evolve from a single ancestor via evolutionary branching. We assume that predator strategies differ in capture rates and a predator with a high capture rate for one prey has a low capture rate for the other and vice versa. First, by using the method of critical function analysis, we identify the general properties of trade-off functions that allow for evolutionary branching in the predator strategy. It is found that if the trade-off curve is weakly convex in the vicinity of the singular strategy and the interspecific prey competition is not strong, then this singular strategy is an evolutionary branching point, near which the resident and mutant predator populations can coexist and diverge in their strategies. Second, we find that after branching has occurred in the predator phenotype, if the trade-off curve is globally convex, the predator population will eventually branch into two extreme specialists, each completely specializing on a particular prey species. However, in the case of smoothed step function-like trade-off, an interior dimorphic singular coalition becomes possible, the predator population will eventually evolve into two generalist species, each feeding on both of the two prey species. The algebraical analysis reveals that an evolutionarily stable dimorphism will always be attractive and that no further branching is possible under this model.  相似文献   

18.
Dispersal and dormancy are two strategies that allow recolonization of empty patches and escape from kin competition. Because they presumably respond to similar evolutionary forces, it is tempting to consider that these strategies may substitute for each other. Yet in order to predict the outcome of the evolution of dispersal and dormancy, and to characterize the emerging covariation between both traits, it is necessary to consider models where dispersal and dormancy evolve jointly. Here, we analyze the evolution of dispersal and dormancy as a function of direct fitness costs, environmental variation, and competition among relatives. We consider two scenarios depending on whether the rates of dormancy for philopatric and dispersed individuals are constrained to be the same (unconditional dormancy) or allowed to be different (conditional dormancy). We show that only philopatric individuals should enter dormancy, at a rate increasing with increasing rates of local extinction and decreasing population sizes. When dormancy and dispersal evolve jointly, we observe a wide range of evolutionary outcomes. In particular, we find that the pattern of covariation between the evolutionarily stable rates of dispersal and dormancy is molded by the rate of extinction and the local population size.  相似文献   

19.
Understanding why rates of morphological evolution vary is a major goal in evolutionary biology. Classical work suggests that body size, interspecific competition, geographic range size and specialization may all be important, and each may increase or decrease rates of evolution. Here, we investigate correlates of proportional evolutionary rates in phalangeriform possums, phyllostomid bats, platyrrhine monkeys and marmotine squirrels, using phylogenetic comparative methods. We find that the most important correlate is body size. Large species evolve the fastest in all four clades, and there is a nonlinear relationship in platyrrhines and phalangeriformes, with the slowest evolution in species of intermediate size. We also find significant increases in rate with high environmental temperature in phyllostomids, and low mass-specific metabolic rate in marmotine squirrels. The mechanisms underlying these correlations are uncertain and appear to be size specific. We conclude that there is significant variation in rates of evolution, but that its meaning is not yet clear.  相似文献   

20.
In this paper, by using the adaptive dynamics approach, we investigate how the adaptive evolution of defense ability promotes the diversity of prey species in an initial one-prey–two-predator community. We assume that the prey species can evolve to a safer strategy such that it can reduce the predation risk, but a prey with a high defense ability for one predator may have a low defense ability for the other and vice versa. First, by using the method of critical function analysis, we find that if the trade-off is convex in the vicinity of the evolutionarily singular strategy, then this singular strategy is a continuously stable strategy. However, if the trade-off is weakly concave near the singular strategy and the competition between the two predators is relatively weak, then the singular strategy may be an evolutionary branching point. Second, we find that after the branching has occurred in the prey strategy, if the trade-off curve is globally concave, then the prey species might eventually evolve into two specialists, each caught by only one predator species. However, if the trade-off curve is convex–concave–convex, the prey species might eventually branch into two partial specialists, each being caught by both of the two predators and they can stably coexist on the much longer evolutionary timescale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号