首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An easy hydrothermal synthesis strategy was applied to synthesize green‐yellow emitting nitrogen‐doped carbon dots (N‐CDs) using 1,2‐diaminobenzene as the carbon source, and dicyandiamide as the dopant. The nitrogen‐doped CDs resulted in improvement in the electronic characteristics and surface chemical activities. N‐CDs exhibited bright fluorescence emission and could response to Ag+ selectively and sensitively. Other ions produced nearly no interference. A N‐CDs based fluorescent probe was then applied to sensitively determine Ag+ with a detection limit of 5 × 10?8 mol/L. The method was applied to the determination of Ag+ dissolved in water. Finally, negligibly cytotoxic, excellently biocompatibile, and highly fluorescent carbon dots were applied for HepG2 cell imaging and the quenched fluorescence by adding Ag+, which indicated its potential applications.  相似文献   

2.
A simple microwave‐assisted solvothermal method was used to prepare fluorescent nitrogen‐doped carbon dots (N‐CDs) with high fluorescence quantum yield (79.63%) using citric acid and N‐(2‐hydroxyethyl)ethylenediamine as starting materials. The PVAm‐g‐N‐CDs grafted products were synthesized by amide bond formation between the carboxylic groups of N‐CDs and amine groups of polyvinylamine (PVAm). Fluorescent hydrogel films (PVAm‐g‐N‐CDs/PAM) were synthesized by interpenetration polymer network polymerization of PVAm‐g‐N‐CDs and acrylamide (AM). When used for ion detection, we found that the fluorescence of the hydrogel films was clearly quenched by addition of Hg2+. Repeatability tests on using the hydrogel films for Hg2+ detection showed that they could be applied at least three times. The PVAm‐g‐N‐CDs/PAM could serve as an effective fluorescent sensing platform for sensitive detection of Hg2+ ions with a detection limit of 0.089 μmol/L. This work may offer a new approach for developing recoverable and sensitive N‐CDs‐based sensors for biological and environmental applications.  相似文献   

3.
We here for the first time demonstrate an analytical approach for the highly selective and sensitive detection of amoxicillin (Amox) in aqueous medium based on the fluorescence quenching of quantum dots (QDs). The change in fluorescence intensity of mercaptopropionic acid‐capped cadmium sulphide (MPA‐CdS) QDs is attributed to the increasing concentration of Amox. The results show that the fluorescence quenching of QDs by Amox takes place through both static and dynamic types of quenching mechanism. The fluorescence quenching of QDs with increase in concentration of Amox shows the linear range between 5 μg ml?1 and 30 μg ml?1 and the limit of detection (LOD) is 5.19 μg ml?1. There is no interference of excipients, which are commonly present in pharmaceutical formulation and urine samples. For the practical application approach, the developed method has been successfully applied for the determination of Amox in pharmaceutical formulations and urine samples with acceptable results.  相似文献   

4.
In this work, carbon dots (CDs) with a high quantum yield (22.3%) were easily prepared by hydrothermal pyrolysis of acid fuchsin 6B and hydrogen peroxide at 180°C for 10 h. The resultant CDs possess a narrow size distribution in the range of 2.6 to 3.2 nm and emit blue fluorescence. Interestingly, the absorption band of metronidazole (MTZ) centered at 318 nm can complementary overlap with the excitation band of the as‐prepared CDs centered at 320 nm, resulting in an inner filter effect (IFE) in high efficiency. In fact, the fluorescence quenching of the CDs depends on the concentration of MTZ. Therefore, a simple method for the detection of MTZ can be established using the CDs‐based sensor via the IFE. The linear range of the proposed method was 0–10 μg mL?1 with the limit of detection as low as 0.257 μg mL?1. This CDs‐based sensor had been applied for the detection of MTZ in honey and MTZ tablets with the recoveries in the range of 98.0% to 105.1% and 95.7% to 106.5%, respectively. Therefore, the as‐prepared CDs have a potential to be developed as a MTZ sensor with high selectivity, sensitivity and accuracy.  相似文献   

5.
A photoluminescent aptasensor has been developed for the detection of lysozyme based on fluorescence resonance energy transfer (FRET) between the carbon dots (CDs) and graphene oxide (GO). In the sensing system, the CDs‐labeled aptamer is adsorbed onto the GO surface and the photoluminescence (PL) signal of the CDs is effectively quenched by GO. Addition of lysozyme can cause a significant FRET inhibition and recover the PL signal of the CDs due to the specific combination of lysozyme and its aptamer and the removal of the CDs‐labeled aptamer from GO surface. Under optimal conditions, the ratio of PL intensity change at 440 nm of the sensing system before and after the addition of lysozyme shows a good linear relationship against the concentration of lysozyme in the range of 0.01–2 μg/mL, with a low detection limit of 1 × 10?3 μg/mL. In addition, the aptasensor has good selectivity so it can distinguish lysozyme with no or little interference by many other biomolecules. It was applied to the detection of lysozyme in human sera with satisfactory recoveries. The results demonstrate the applicability of the aptasensor for monitoring lysozyme in real samples. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
A simple and selective spectrofluorimetric method for the detection of chlortetracycline (CTC) was studied. In pH 7.4 buffer medium l ‐tryptophan (l ‐Trp), applied as the fluorescence probe, interacted with CTC resulting in fluorescence quenching of the probe. CTC was detected with maximum excitation and emission wavelengths at λex/λem = 275/350 nm. Notably, quenching of fluorescence intensities was positively proportional to the CTC concentration over the range of 0.65–30 μmol L?1 and the limit of detection was 0.2 μmol L?1. Effect of temperature shown in Stern?Volmer plots, absorption spectra and fluorescence lifetime determination, indicated that fluorescence quenching of l ‐Trp by CTC was mainly by static quenching. The proposed study used practical samples analysis satisfactorily.  相似文献   

7.
The present paper describes a developed and validated simple, highly sensitive and cost‐effective spectrofluorometric method for determination of clonazepam (CNP). The proposed method depends on forming a highly fluorescent product through the reduction of CNP with Zn/HCl. The produced fluorophore exhibits a strong fluorescence at λem 350 nm after excitation at λex 250 nm. The use of carboxymethylcellulose (CMC) greatly enhanced the fluorescence intensity of the produced fluorophore to the extent of about 100%. Calibration curve showed good linear regression (r 2 > 0.9998) within test ranges of 20–400 ng ml?1 with a lower detection limit of 0.67 ng ml?1 and lower quantification limit of 2.22 ng ml?1 upon using CMC. The method was successfully applied to the analysis of CNP in its pharmaceutical formulations and the results were in agreement with those obtained using a reference method. Furthermore, the content uniformity testing of the tablets was also performed. The application of the proposed method was extended to determine CNP in spiked human plasma sample as a preliminary investigation and the results were satisfactory.  相似文献   

8.
We report on a simple and sensitive sulfur and nitrogen co‐doped carbon quantum dot (S,N‐CQD)‐based chemiluminescence (CL) sensor for the determination of indomethacin. S,N‐CQDs were prepared by a hydrothermal method and characterized by fluorescence spectra, Fourier transform infrared spectroscopy and transmission electron microscopy. To obtain the best CL system for determination of indomethacin, the reaction of S,N‐CQDs with some common oxidants was studied. Among the tested systems, the S,N‐CQD–KMnO4 reaction showed the highest sensitivity for the detection of indomethacin. Under optimum conditions, the calibration plot was linear over a concentration range of 0.1–1.5 mg L?1, with a limit of detection (3σ) of 65 μg L?1. The method was applied to the determination of indomethacin in environmental and biological samples with satisfactory results.  相似文献   

9.
The flow‐injection chemiluminescence (FI‐CL) behavior of a gold nanocluster (Au NC)–enhanced rhodamine B–KMnO4 system was studied under alkaline conditions for the first time. In the present study, the as‐prepared bovine serum albumin‐stabilized Au NCs showed excellent stability and reproducibility. The addition of trace levels of fluvoxamine maleate (Flu) led to an obvious decline in CL intensity in the rhodamine B–KMnO4–Au NCs system, which could be used for quantitative detection of Flu. Under optimized conditions, the proposed CL system exhibited a favorable analytical performance for Flu determination in the range 2 to 100 μg ml?1. The detection limit for Flu measurement was 0.021 μg ml?1. Moreover, this newly developed system revealed outstanding selectivity for Flu detection when compared with a multitude of other species, such as the usual ions, uric acid and a section of hydroxy compounds. Additionally, CL spectra, UV–visible spectroscopes and fluorescence spectra were measured in order to determine the possible reaction mechanism. This approach could be used to detect Flu in human urine and human serum samples with the desired recoveries and could have promising application under physiological conditions.  相似文献   

10.
The method of fluorescent probes has been an important technique for detection of nitrite (NO2?). As an important inorganic salt, excessive nitrite would threaten humans and the environment. In this paper, a colorimetric fluorescent probe P‐N (1,2‐diaminoanthraquinone) with rapid response and high selectivity, which could detect NO2? by visual colour changes and fluorescence spectroscopy is presented. The probe P‐N solution (pH 1) changed from pink to colourless with the addition of NO2? and fluorescence intensity at 639 nm clearly decreased. Good linear exists between fluorescence intensities and NO2? concentrations for the range 0–16 μM, and the detection limit was 54 nM (based on a 3σ/slope). Moreover, probe P‐N could also detect NO2? in real water samples, and results were all satisfactory. Probe P‐N shows great practical application value for detecting NO2? in the environment.  相似文献   

11.
One of the most commonly used drugs in treatment of schizophrenia is flupentixol dihydrochloride, therefore it is important to develop a simple, low cost and sensitive spectrofluorimetric method for the estimation of flupentixol dihydrochloride. The yellow fluorescent product that is generated from the nucleophilic substitution reaction of the free lone pair of the alcoholic hydroxyl group of the drug and 4‐chloro‐7‐nitrobenzofurazan (NBD‐Cl) in Mcllvaine buffer pH 7.0 was estimated at 510 nm (λex 460 nm). The variables that affect the development of the reaction product were explored and optimized. The linear range of this method was 0.5–2.5 μg ml?1 with a limit of quantitation equal to 0.29 μg ml?1. Our method was successfully applied for the assurance of flupentixol in tablet form with average percentage recovery of 99.08 ± 1.01% without obstruction from the basic excipients exhibits. Furthermore, our strategy was extended to study the content uniformity testing of flupentixol in Fluaxnol® tablets.  相似文献   

12.
In this study, a new analytical method for erdosteine (ERD) in plasma based on high‐performance liquid chromatography and a fluorimetric detector, is presented. Precolumn derivatization of ERD with 4‐bromomethyl‐7‐methoxy coumarin (BrMmC) and dibenzo‐18‐crown‐6‐ether as a reaction catalyst led to the production of a fluorescent compound. ERD was monitored by fluorescence with an excitation wavelength λext. = 325 nm and emission wavelength λem. = 390 nm. Optimum reaction conditions were carefully studied and optimized. A chromatographic procedure was performed using a C18 column of 150 × 4.6 mm and 3 μm particle size and a mobile phase consisting of methanol:acetonitrile:water (30:30:40, v/v/v) under a flow rate of 0.5 ml min?1. A calibration plot was established covering analyte concentration range 0.2–3.0 μg ml?1; the detection limit was 0.015 μg ml?1 and quantification limit was 0.05 μg ml?1. Mean recovery was 87.33% and relative standard deviation was calculated to be less than 4.4%. The developed method was successfully used to determine pharmacokinetic preparations of ERD subsequent to administration of a 900 mg dose capsule to a healthy 40‐year‐old woman volunteer.  相似文献   

13.
A novel sensitive and cost‐effective spectrofluorimetric method has been developed and validated for determination of lisinopril (an angiotensin converting enzyme inhibitor) in its pure form and pharmaceutical preparations. The method is based on the reaction of the drug with ninhydrin and phenylacetaldehyde in buffered medium (pH 7.0) to form a highly fluorescent product measured at 460 nm after excitation at 390 nm. Different experimental parameters were optimized and calibration curve was constructed. The fluorescence‐concentration relationship was linear in the range of 0.15–4.0 μg mL?1. The calculated Limit of detection (LOD) and Limit of quantitation (LOQ) were 0.04 and 0.12 μg mL?1, respectively. The method was successfully applied for the analysis of pharmaceutical preparations containing the studied drug either alone or co‐formulated with hydrochlorothiazide. The obtained results were in agreement with those of the reported method in respect to accuracy and precession. Moreover, the method was applied content uniformity testing according to United States Pharmacopeia (USP) guidelines.  相似文献   

14.
In this paper, a simple and highly sensitive spectrofluorimetric method was developed and validated for the determination of entacapone (ETC). The proposed method is based on forming a highly fluorescent product through the reduction of ETC with Zn/HCl. The produced fluorophore exhibits strong fluorescence at λem 345 nm after excitation at λex 240 nm. The use of fluorescence enhancers such as Tween‐80 and carboxy methyl cellulose (CMC) greatly enhanced the fluorescence of the produced fluorophore by 150% and 200%, respectively. Calibration curves showed good linear regression (r2 > 0.9998) within test ranges of 0.05–2.0 and 0.02–1.80 μg mL?1 with lower detection limits of 1.27 × 10?2 and 4.8 × 10?3 μg mL?1 and lower quantification limits of 4.21 × 10?2 and 1.61 × 10?2 μg mL?1 upon using Tween‐80 and or CMC, respectively. The method was successfully applied to the analysis of ETC in its pharmaceutical formulations (either alone or in presence of other co‐formulated drugs). The results were in good agreement with those obtained using the official method. The methods were further extended to determine the drug in human plasma samples, and to study the pharmacokinetics of ETC. The paper is the first report on the spectrofluorimetric determination of entacapone.  相似文献   

15.
S,N co‐doped carbon quantum dots (N,S‐CQDs) with super high quantum yield (79%) were prepared by the hydrothermal method and characterized by transmission electron microscopy, photoluminescence, UV–Vis spectroscopy and Fourier transformed infrared spectroscopy. N,S‐CQDs can enhance the chemiluminescence intensity of a luminol–H2O2 system. The possible mechanism of the luminol–H2O2–(N,S‐CQDs) was illustrated by using chemiluminescence, photoluminescence and ultraviolet analysis. Ranitidine can quench the chemiluminescence intensity of a luminol–H2O2–N,S‐CQDs system. So, a novel flow‐injection chemiluminescence method was designed to determine ranitidine within a linear range of 0.5–50 μg ml?1 and a detection limit of 0.12 μg ml?1. The method shows promising application prospects.  相似文献   

16.
17.
In this study, fluorescent silver nanoclusters (Ag NCs) were synthesized using denatured fish sperm DNA as the template. In contrast to other methods, this method did not use artificial DNA as the template. After their reaction with denatured fish sperm DNA, Ag+ ions were reduced by NaBH4 to form Ag NCs. The Ag NCs showed a strong fluorescence emission at 650 nm when excited at 585 nm. The fluorescence intensity increased fourfold at pH 3.78, controlled with Britton–Robinson buffer solution. The fluorescence of the Ag NCs was quenched in the presence of trace mercury ions (Hg2+) in a weakly acidic medium and nitrogen atmosphere. The extent of the fluorescence quenching of Ag NCs strongly depends on the Hg2+ ion concentration over a linear range from 2.0 nmol L?1 to 3.0 μmol L?1. The detection limit (3σ/k) for Hg2+ was 0.7 nmol L?1. Thus, a sensitive and rapid method was developed for the detection of Hg2+ ions.  相似文献   

18.
Taking advantage of the compelling properties of d ‐penicillamine (d ‐PA) combined with copper, a method for the sensitive and selective determination of d ‐PA was established using copper nanocluster (Cu NC)‐based fluorescence enhancement. d ‐PA molecules containing a thiol compound showed a strong tendency to combine with the surface of Cu NCs, causing the re‐dispersion of nanoclusters and therefore fluorescence intensity was enhanced. Fluorescence enhancement efficiency of Cu NCs induced by d ‐PA was linear, with the d ‐PA concentration varying from 0.6–30 μg ml?1 (R2 = 0.9952) and with a detection limit of 0.54 μg ml?1. d ‐PA content in human urine samples was detected with recoveries of 104.8–112.99%. Fluorescence‐enhanced determination of d ‐PA using Cu NCs was established for the first time and this rapid, easy and sensitive method should attract much attention for this application.  相似文献   

19.
The continuous spread of highly pathogenic avian influenza virus (AIV) subtype H5N1 is threatening the poultry industry and human health worldwide. Rapid and sensitive diagnostic methods are required for the H5N1 surveillance. In this study, the fluorescent (FL) probe of CdTe quantum dots (QDs) was designed using covalently linked rabbit anti‐AIV H5N1 antibody. Based on these QD–antibody conjugates, a novel sandwich FL‐linked immunosorbent assay (sFLISA) was developed for H5N1 viral antigen detection. The sFLISA allowed for H5N1 viral antigen determination in a linear range of 8.0 × 10?3 to 5.1 × 10?1 μg mL?1 with the limit of detection (LOD) of 1.5 × 10?4 μg mL?1. In comparison with virus isolation for 103 clinic samples, the sensitivity and specificity of sFLISA were found to be 93.6 and 91.1% respectively. The sFLISA supplied a novel approach to rapid and sensitive detection of AIV subtype H5N1 and showed great potential for biological applications in immunoassays. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, an innovative and facile one‐pot method for synthesizing water‐soluble and stable fluorescent Cu nanoclusters (CuNCs), in which glutathione (GSH) served as protecting ligand and ascorbic acid (AA) as reducing agent was reported. The resultant CuNCs emitted blue‐green fluorescence at 440 nm, with a quantum yield (QD) of about 3.08%. In addition, the prepared CuNCs exhibited excellent properties such as good water solubility, photostability and high stability toward high ionic strength. On the basis of the selective quenching of Hg2+ on CuNCs fluorescence, which may be the result of Hg2+ ion‐induced aggregation of the CuNCs, the CuNCs was used for the selective and sensitive determination of Hg2+ in aqueous solution. The proposed analytical strategy permitted detection of Hg2+ in a linear range of 4 × 10?8 to 6 × 10?5 M, with a detection limit of 2.2 × 10?8 M. Eventually, the practicability of this sensing approach was confirmed by its successful application to assay Hg2+ in tap water, Lotus lake water and river water samples with the quantitative spike recoveries ranging from 96.9% to 105.4%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号