首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of glucose‐derived carbon quantum dots (CQDs) with silver (Ag) and gold (Au) nanoparticles (NPs) was explored by fluorescence spectroscopy. Both metal NPs cause an efficient quenching of CQD fluorescence, which is likely due to the energy transfer process between CQDs as donors and metal NPs as acceptors. The Stern–Volmer plots were evaluated and corresponding quenching constants were found to be 1.9 × 1010 and 2.2 × 108 M?1 for AgNPs and AuNPs, respectively. The analytical applicability of these systems was demonstrated for turn‐on fluorescence detection of the anti‐cancer drug, 6‐thioguanine. Because the CQD–AgNP system had much higher sensitivity than the CQD–AuNP system, we used it as a selective fluorescence probe in a turn‐on assay of 6‐thioguanine. Under optimum conditions, the calibration graph was linear from 0.03 to 1.0 μM with a detection limit of 0.01 μM. The developed method was applied to the analysis of human plasma samples with satisfactory results.  相似文献   

2.
The flow‐injection chemiluminescence (FI‐CL) behavior of a gold nanocluster (Au NC)–enhanced rhodamine B–KMnO4 system was studied under alkaline conditions for the first time. In the present study, the as‐prepared bovine serum albumin‐stabilized Au NCs showed excellent stability and reproducibility. The addition of trace levels of fluvoxamine maleate (Flu) led to an obvious decline in CL intensity in the rhodamine B–KMnO4–Au NCs system, which could be used for quantitative detection of Flu. Under optimized conditions, the proposed CL system exhibited a favorable analytical performance for Flu determination in the range 2 to 100 μg ml?1. The detection limit for Flu measurement was 0.021 μg ml?1. Moreover, this newly developed system revealed outstanding selectivity for Flu detection when compared with a multitude of other species, such as the usual ions, uric acid and a section of hydroxy compounds. Additionally, CL spectra, UV–visible spectroscopes and fluorescence spectra were measured in order to determine the possible reaction mechanism. This approach could be used to detect Flu in human urine and human serum samples with the desired recoveries and could have promising application under physiological conditions.  相似文献   

3.
Sensing of pyrophosphate ion (PPi) has received much attention due to the strong demand for clinical diagnostics. Here, based on gold nanoclusters (Au NCs), a ratiometric optical detection method for PPi is developed by simultaneously detecting the dual signals of fluorescence (FL) and second-order scattering (SOS). The PPi is detected by inhibiting the formation of aggregates of Fe3+ with Au NCs. Binding of Fe3+ to Au NCs causes aggregation of Au NCs, which leads to fluorescence quenching and scattering increasing. The presence of PPi can competitively bind Fe3+ to re-disperse the Au NCs and finally recover the fluorescence and reduce the scattering signal. The designed PPi sensor shows a high sensitivity with a linear range 5–50 μM and a detection limit of 1.2 μM. In addition, the assay has excellent selectivity for PPi, which makes its application in real biological samples extremely valuable.  相似文献   

4.
A spectrofluorimetric method using fluorescent carbon dots (CDs) was developed for the selective detection of azelnidipine (AZEL) pharmaceutical in the presence of other drugs. In this study, N-doped CDs (N-CDs) were synthesized through a single-step hydrothermal process, using citric acid and urea as precursor materials. The prepared N-CDs showed a highly intense blue fluorescence emission at 447 nm, with a photoluminescence quantum yield of ~21.15% and a fluorescence lifetime of 0.47 ns. The N-CDs showed selective fluorescence quenching in the presence of all three antihypertensive drugs, which was used as a successful detection platform for the analysis of AZEL. The photophysical properties, UV–vis light absorbance, fluorescence emission, and lifetime measurements support the interaction between N-CDs and AZEL, leading to fluorescence quenching of N-CDs as a result of ground-state complex formation followed by a static fluorescence quenching phenomenon. The detection platform showed linearity in the range 10–200 μg/ml (R2 = 0.9837). The developed method was effectively utilized for the quantitative analysis of AZEL in commercially available pharmaceutical tablets, yielding results that closely align with those obtained from the standard method (UV spectroscopy). With a score of 0.76 on the ‘Analytical GREEnness (AGREE)’ scale, the developed analytical method, incorporating 12 distinct green analytical chemistry components, stands out as an important technique for estimating AZEL.  相似文献   

5.
In view of the significance of nitrofurantoin, there is an urgent need for efficient analytical methods for accurate detection of nitrofurantoin. Considering their superior fluorescence performance and rarity of reports regarding nitrofurantoin detection by fluorescent silver nanoclusters (Ag NCs), Ag NCs with good stability and uniform size were synthesized through a simple method by protection of histidine (His) and reduction of ascorbic acid (AA). Based on the quenching by nitrofurantoin, Ag NCs were applied successfully in the detection of nitrofurantoin with high sensitivity. In the range of 0.5–150 μM, a linear relationship was found between ln(F0/F) and nitrofurantoin amounts. Static quenching and inner filter effect were proved to be the main quenching mechanisms. Significantly superior selectivity and satisfactory recovery results in bovine serum indicate that Ag NCs provide a better choice for nitrofurantoin detection.  相似文献   

6.
The development of an analytical probe to monitor highly mutagenic picric acid (PA) carries enormous significance for the environment and for health. A novel, simple and rapid fluorescence analytical assay using sulfur‐doped graphene quantum dots (SGQDs) was designed for the highly sensitive and selective detection of PA. SGQDs were synthesized via simple pyrolysis of 3‐mercaptopropionic acid and citric acid and characterized using advanced analytical techniques. Fluorescence intensity (FI) of SGQDs was markedly quenched by addition of PA, attributed to the inner filter effect and dominating static quenching mechanism between the two, in addition to a significant colour change. The calibration curve of the proposed assay exhibited a favourable linearity between quenched FI and PA concentration over the 0.1–100 μΜ range with a lowest detection limit of 0.093 μΜ and a correlation coefficient of 0.9967. The analytical assay was investigated for detection of trace amounts of PA in pond and rain water samples and showed great potential for practical applications with both acceptable recovery (98.0–100.8%) and relative standard deviation (1.24–4.67%). Analytical performance of the assay in terms of its detection limit, linearity range, and recovery exhibited reasonable superiority over previously reported methods, thereby holding enormous promise as a simple, sensitive, and selective method for detection of PA.  相似文献   

7.
Proteins in human serum are increasingly being studied for their roles in a wide variety of biochemical interactions. To improve the sensitivity of the detection of human serum proteins after native polyacrylamide gel electrophoresis (PAGE), we have developed a fluorescence imaging detection technique for the detection. BSA (bovine serum albumin)-stabilized Au nanoclusters (NCs) were applied as fluorescent probes for imaging, and low-temperature plasma (LTP) treatment of the Au NCs was introduced to enhance the fluorescence imaging. Here, a series of optimization experiments (e.g. those to optimize for pH) were conducted for protein detection after 1-DE and 2-DE, and several types of discharge gases (He, O(2), and N(2)) were selected for the LTP treatment. The possible mechanism of interaction between the proteins and the Au NCs was demonstrated by an isothermal titration calorimetry experiment. Using the present method, a sensitivity of 7-14 times higher than that of traditional staining detection methods was observed in the oxygen LTP-treated Au NCs fluorescence images, and some relatively low abundance proteins (identified by the MS/MS technique) were easily detected. In addition, this fluorescence imaging method was applied to distinguish between the serum samples of patients with liver diseases and those of healthy people. Thus, this fluorescence imaging method is suitable for the highly sensitive detection of various serum proteins, and it shows potential capabilities for clinical diagnosis.  相似文献   

8.
We report a facile one‐pot sonochemical approach to preparing highly water‐soluble Ag nanoclusters (NCs) using bovine serum albumin as a stabilizing agent and reducing agent in aqueous solution. Intensive electrogenerated chemiluminescence (ECL) was observed from the as‐prepared Ag (NCs) and successfully applied for the ECL detection of dopamine with high sensitivity and a wide detection range. A possible ECL mechanism is proposed for the preparation of Ag NCs. With this method, the dopamine concentration was determined in the range of 8.3 × 10–9 to 8.3 × 10–7 mol/L without the obvious interference of uric acid, ascorbic acid and some other neurotransmitters, such as serotonin, epinephrine and norepinephrine, and the detection limit was 9.2 × 10–10 mol/L at a signal/noise ratio of 3. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
A novel and sensitive chemiluminescence (CL) procedure based on the synergetic catalytic effects of gold nanoclusters (Au NCs) and graphene quantum dots (GQDs) was developed for the reliable measurement of cimetidine (CM). The initial experiments showed that the KMnO4‐based oxidation of alkaline rhodamine B (RhoB) generated a very weak CL emission, which was intensively enhanced in the simultaneous presence of Au NCs and GQDs. CL intermediates can be adsorbed and gathered on the surface of Au NCs, becoming more stable. GQDs participate in the energy transferring processes and facilitate them. These improving effects were simultaneously obtained by adding both Au NCs and GQDs into the RhoB‐KMnO4 reaction. Consequently, the increasing effect of the Au NCs/GQDs mixture was more than that of pure Au NCs or GQDs, and a new nano‐assisted powerful CL system was achieved. Furthermore, a marked quenching in the emission of the introduced CL system was observed in the presence of CM, so the system was examined to design a sensitive sensor for CM. After optimization of influencing parameters, the linear lessening in CL emission intensity of KMnO4‐RhoB‐Au NCs/GQDs was verified for CM concentrations in the range 0.8–200 ng ml?1. The limit of detection (3Sb/m) was 0.3 ng ml?1. Despite being a simple CL method, good sensitivity was obtained for CM detection with reliable results for CM determination in human urine samples.  相似文献   

10.
This paper proposed a simple and sensitive approach for detecting graphene oxide (GO) in a wide pH range in environmental water samples using fluorescent β‐CD protected Cu NCs based on the hydrogen‐bond interactions between GO and 6‐SH‐β‐CD. The influences of dilution ratio and pH were investigated. We found that the fluorescence quenching efficiency of Cu NCs by GO remained almost the same under pH from 4 to 10, which benefitted the monitoring of GO under different pH conditions in real samples. The fluorescence quenching mechanism was also discussed. The fluorescence of β‐CD protected Cu NCs could be quenched in the presence of GO with a lowest detection concentration of 0.1 mg·L?1. Good linear correlations were obtained over the concentration range from 0 to 30 mg·L?1 at different pH values (pH = 4, pH = 7 and pH = 12). In addition, this method was successfully applied to the determination of GO in real samples which presents more opportunities for application in environmental and material sciences.  相似文献   

11.
Taking advantage of the compelling properties of d ‐penicillamine (d ‐PA) combined with copper, a method for the sensitive and selective determination of d ‐PA was established using copper nanocluster (Cu NC)‐based fluorescence enhancement. d ‐PA molecules containing a thiol compound showed a strong tendency to combine with the surface of Cu NCs, causing the re‐dispersion of nanoclusters and therefore fluorescence intensity was enhanced. Fluorescence enhancement efficiency of Cu NCs induced by d ‐PA was linear, with the d ‐PA concentration varying from 0.6–30 μg ml?1 (R2 = 0.9952) and with a detection limit of 0.54 μg ml?1. d ‐PA content in human urine samples was detected with recoveries of 104.8–112.99%. Fluorescence‐enhanced determination of d ‐PA using Cu NCs was established for the first time and this rapid, easy and sensitive method should attract much attention for this application.  相似文献   

12.
The effects of silver nanoparticles on the photophysical properties of 1,7‐bis(4‐hydroxy‐3‐methoxyphenyl)‐1,6‐heptadiene‐3,5‐dione, popularly known as curcumin, have been investigated using optical absorption and fluorescence techniques. Although absorption spectroscopy suggests a ground‐state complex formation, fluorescence quenching data confirms a simultaneous static and dynamic quenching, inferring ground as well as excited‐state complex formation. The recovery of fluorescence quenching of the curcumin–silver nanoparticle complex in the presence of ascorbic acid or uric acid emphasizes a strong interaction between the silver nanoparticles and ascorbic acid/uric acid, suggesting that fluorescence recovery after the quenching of curcumin–silver nanoparticle complexes has potential for ascorbic acid or uric acid assay development. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
This paper reports a convenient method for the synthesis of highly fluorescent Au nanoclusters (NCs) via electrostatically induced phase transfer. Furthermore, on the basis of an aggregation‐induced fluorescence quenching mechanism, the potential application for Cu2+ sensing on the fluorescence emission of the Au NCs is discussed. These prepared fluorescent Au NCs offer acceptable sensitivity, high selectivity, and a limit of quantitation of 0.02 μM for the measurement of Cu2+, which is lower than the maximum level (1 ppm, equals to 15.6 μM) of Cu2+ permitted in drinking water in China. This study contributes to the further development of practical applications with fluorescent NCs.  相似文献   

14.
We here for the first time demonstrate an analytical approach for the highly selective and sensitive detection of amoxicillin (Amox) in aqueous medium based on the fluorescence quenching of quantum dots (QDs). The change in fluorescence intensity of mercaptopropionic acid‐capped cadmium sulphide (MPA‐CdS) QDs is attributed to the increasing concentration of Amox. The results show that the fluorescence quenching of QDs by Amox takes place through both static and dynamic types of quenching mechanism. The fluorescence quenching of QDs with increase in concentration of Amox shows the linear range between 5 μg ml?1 and 30 μg ml?1 and the limit of detection (LOD) is 5.19 μg ml?1. There is no interference of excipients, which are commonly present in pharmaceutical formulation and urine samples. For the practical application approach, the developed method has been successfully applied for the determination of Amox in pharmaceutical formulations and urine samples with acceptable results.  相似文献   

15.
The change in photophysical properties of the organic molecule due to solvatochromic effect caused by different solvent environments at room temperature gives information about the dipole moments of 3‐N‐(N′‐methylacetamidino)benzanthrone (3‐MAB). The quantum yield, fluorescence lifetime of 3‐MAB was measured in different solvents to calculate radiative and non‐radiative rate constants. The results revealed that the excited state dipole moment (μe) is relatively larger compared to the ground state dipole moment (μg), indicating the excited state of the dye under study is more polar than the ground state and the same trend is noticed with theoretical calculations performed using the CAM‐B3LYP/6‐311+G(d,p) method. Further, the study on preferential solvation was carried out for 3‐MAB dye in ethyl acetate–methanol solvent mixture. The fluorescence quenching method has been employed for the detection of dopamine using 3‐MAB as fluorescent probe, using steady‐state and time resolved methods at room temperature. The method enables dopamine in the micro molar range to be detected. Also, an attempt to verify the quenching process by employing different models has been tried. Various rate parameters are measured using these models, our results indicates the quenching process is diffusion limited.  相似文献   

16.
Plants dissipate excess excitation energy as heat by non‐photochemical quenching (NPQ). NPQ has been thought to resemble in vitro aggregation quenching of the major antenna complex, light harvesting complex of photosystem II (LHC‐II). Both processes are widely believed to involve a conformational change that creates a quenching centre of two neighbouring pigments within the complex. Using recombinant LHC‐II lacking the pigments implicated in quenching, we show that they have no particular role. Single crystals of LHC‐II emit strong, orientation‐dependent fluorescence with an emission maximum at 680 nm. The average lifetime of the main 680 nm crystal emission at 100 K is 1.31 ns, but only 0.39 ns for LHC‐II aggregates under identical conditions. The strong emission and comparatively long fluorescence lifetimes of single LHC‐II crystals indicate that the complex is unquenched, and that therefore the crystal structure shows the active, energy‐transmitting state of LHC‐II. We conclude that quenching of excitation energy in the light‐harvesting antenna is due to the molecular interaction with external pigments in vitro or other pigment–protein complexes such as PsbS in vivo, and does not require a conformational change within the complex.  相似文献   

17.
Recognition and quantification of oligonucleotide sequences play important roles in medical diagnosis. In this study, a new fluorescent oligonucleotide‐stabilized silver nanocluster beacon (NCB) probe was designed for sensitive detection of oligonucleotide sequence targets. This probe contained two tailored DNA strands. One strand was a signal probe strand containing a cytosine‐rich strand template for fluorescent silver nanocluster (Ag NC) synthesis and a detection sections at each end. The other strand was a fluorescence enhancing strand containing a guanine‐rich section for signal enhancement at one end and a linker section complementary to one end of the signal probe strand. After synthesis of the Ag NCs and hybridization of the two strands, the fluorescence intensity of the as‐prepared silver NCB was enhanced 200‐fold compared with the Ag NCs. Two NCBs were designed to detect two disease‐related oligonucleotide sequences, and results indicated that the two target oligonucleotide sequences in the range 50.0–600.0 and 50.0–200.0 nM could be linearly detected with detection limits of 20 and 25 nM, respectively. The developed fluorescence method using NCBs for oligonucleotide sequence detection was sensitive, facile and had potential for use in bioanalysis and diagnosis.  相似文献   

18.
The present study reports a one‐step synthesis method for the preparation of cationic gold nanoclusters (Au NCs). Polyethyleneimine (PEI), a positively charged hyperbranched polyamine, was selected as the capping reagent. Glutathione showed a synergistic effect on the formation of the small size of cationic Au NCs. The prepared cationic Au NCs have a size less than 2 nm and carry a positive charge in solution with pH less than 11. The cationic PEI–Au NCs‐triggered luminol chemiluminescence (CL) reactions showed slow and intense CL profiles. The maximum CL intensity can be obtained within 10 min and the CL signal maintained almost the same within 30 min. A linear increase of CL intensity was observed in the presence of an increasing concentration of cationic Au NCs ranging from 0.030 μM to 15 μM. The linear response of the cationic Au NCs in the CL reaction and the glow‐type CL profile make the proposed CL reaction have broad application prospects in the field of biological analysis and CL imaging.  相似文献   

19.
Aims: We found that an adenine base caused fluorescence quenching of a fluorescein (FL)‐labelled probe in DNA:RNA hybrid sequences, and applied this finding to a nucleic acid sequence–based amplification (NASBA) method. Methods and Results: The present NASBA method employed a probe containing an FL‐modified thymine at its 3′ end and ethidium bromide (EtBr) on the basis of a combination of adenine‐induced quenching and fluorescence resonance energy transfer (FRET) between the FL donor and EtBr acceptor. This NASBA was used to detect Shiga toxin (STX) stx‐specific mRNA in STX‐producing Escherichia coli, demonstrating rapid quantification of the target gene with high sensitivity. Conclusion: Although the inherent quenching effect of adenine was inferior to that of guanine, FRET between the FL and EtBr moieties enhanced the adenine‐induced quenching, allowing rapid and sensitive real‐time NASBA detection. Significance and Impact of the Study: This study gives a novel real‐time diagnostic system based on NASBA for a sensitive mRNA (or viral RNA) detection.  相似文献   

20.
The molecular interactions between salicylic acid (SA) and proflavin hemisulfate (PF) were investigated using fluorescence and UV–VIS absorption spectroscopy in an aqueous micellar environment. Changes in the absorption spectra of SA in the presence of PF indicate a ground state interaction between salicylate and proflavine hemisulfate ions to form a complex. The excitation bands of SA monitored at its emission wavelength reveal a red spectral shift of 8390.54 and 2037.75 cm‐1 when compared with absorption bands. The intensity of both excitation bands decreased in the presence of increasing amounts of PF. The absence of excitation bands of PF rules out the possibility of its direct excitation and suggests energy transfer from excited SA to PF, resulting in quenching of the SA fluorescence. The fluorescence quenching results were found to fit the well‐known Stern–Volmer (S–V) relation. S–V plots at different temperatures were used to further evaluate thermodynamic parameters such as ?G, ?H and ΔS. The thermodynamic and kinetic data obtained from the quenching results were used to investigate the possible mechanism of binding, the nature of the binding force and the distance between SA and PF molecules. The linear relation between SA fluorescence quenching and PF concentration used to develop an analytical method for the determination of PF from Lorexane (a veterinary cream) using a fluorescence quenching method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号