首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
红细胞膜蛋白与膜骨架   总被引:3,自引:0,他引:3  
近10多年红细胞膜领域的研究取得了可观的进展,在红细胞膜蛋白的结构-功能相关和相互作用以及红细胞膜障碍多方面都有新的发现和开拓.现主要就国内外有关报道作一扼要综述,涉及红细胞膜蛋白的组成、功能及其相互作用,红细胞膜骨架和红细胞膜蛋白疾病等研究进展.  相似文献   

2.
Adsorption of proteins onto membranes can alter the local membrane curvature. This phenomenon has been observed in biological processes such as endocytosis, tubulation, and vesiculation. However, it is not clear how the local surface properties of the membrane, such as membrane tension, change in response to protein adsorption. In this article, we show that the partial differential equations arising from classical elastic model of lipid membranes, which account for simultaneous changes in shape and membrane tension due to protein adsorption in a local region, cannot be solved for nonaxisymmetric geometries using straightforward numerical techniques; instead, a viscous-elastic formulation is necessary to fully describe the system. Therefore, we develop a viscous-elastic model for inhomogeneous membranes of the Helfrich type. Using the newly available viscous-elastic model, we find that the lipids flow to accommodate changes in membrane curvature during protein adsorption. We show that, at the end of protein adsorption process, the system sustains a residual local tension to balance the difference between the actual mean curvature and the imposed spontaneous curvature. We also show that this change in membrane tension can have a functional impact such as altered response to pulling forces in the presence of proteins.  相似文献   

3.
Adsorption of proteins onto membranes can alter the local membrane curvature. This phenomenon has been observed in biological processes such as endocytosis, tubulation, and vesiculation. However, it is not clear how the local surface properties of the membrane, such as membrane tension, change in response to protein adsorption. In this article, we show that the partial differential equations arising from classical elastic model of lipid membranes, which account for simultaneous changes in shape and membrane tension due to protein adsorption in a local region, cannot be solved for nonaxisymmetric geometries using straightforward numerical techniques; instead, a viscous-elastic formulation is necessary to fully describe the system. Therefore, we develop a viscous-elastic model for inhomogeneous membranes of the Helfrich type. Using the newly available viscous-elastic model, we find that the lipids flow to accommodate changes in membrane curvature during protein adsorption. We show that, at the end of protein adsorption process, the system sustains a residual local tension to balance the difference between the actual mean curvature and the imposed spontaneous curvature. We also show that this change in membrane tension can have a functional impact such as altered response to pulling forces in the presence of proteins.  相似文献   

4.
Membrane Fusion     
The fusion of biological membranes results in two bilayer-based membranes merging into a single membrane. In this process the lipids have to undergo considerable rearrangement. The nature of the intermediates that are formed during this rearrangement has been investigated. Certain fusion proteins facilitate this process. In many cases short segments of these fusion proteins have a particularly important role in accelerating the fusion process. Studies of the interaction of model peptides with membranes have allowed for increased understanding at the molecular level of the mechanism of the promotion of membrane fusion by fusion proteins. There is an increased appreciation of the roles of several independent segments of fusion proteins in promoting the fusion process.Many of the studies of the fusion of biological membranes have been done with the fusion of enveloped viruses with other membranes. One reason for this is that the number of proteins involved in viral fusion is relatively simple, often requiring only a single protein. For many enveloped viruses, the structure of their fusion proteins has certain common elements, suggesting that they all promote fusion by an analogous mechanism. Some aspects of this mechanism also appears to be common to intracellular fusion, although several proteins are involved in that process which is more complex and regulated than is fusion.  相似文献   

5.
In cell mechanics, distinguishing the respective roles of the plasma membrane and of the cytoskeleton is a challenge. The difference in the behavior of cellular and pure lipid membranes is usually attributed to the presence of the cytoskeleton as explored by membrane nanotube extrusion. Here we revisit this prevalent picture by unveiling unexpected force responses of plasma membrane spheres devoid of cytoskeleton and synthetic liposomes. We show that a tiny variation in the content of synthetic membranes does not affect their static mechanical properties, but is enough to reproduce the dynamic behavior of their cellular counterparts. This effect is attributed to an amplified intramembrane friction. Reconstituted actin cortices inside liposomes induce an additional, but not dominant, contribution to the effective membrane friction. Our work underlines the necessity of a careful consideration of the role of membrane proteins on cell membrane rheology in addition to the role of the cytoskeleton.  相似文献   

6.
7.
Summary It is well known that the partial reduction of oxygen can result in the formation of highly reactive oxygen products. Hydrogen peroxide is one of these metabolites of oxygen. Peroxidases utilize this metabolite for a variety of functions. It is the purpose of this treatise to review the nature and function of various membrane peroxidases in the body.  相似文献   

8.
Prestin is the membrane protein in outer hair cells that harnesses electrical energy by changing its membrane area in response to changes in the membrane potential. To examine the effect of membrane thickness on this protein, phosphatidylcholine (PC) with various acyl-chain lengths were incorporated into the plasma membrane by using γ-cyclodextrin. Incorporation of short chain PCs increased the linear capacitance and positively shifted the voltage dependence of prestin, up to 120 mV, in cultured cells. PCs with long acyl chains had the opposite effects. Because the linear capacitance is inversely related to the membrane thickness, these voltage shifts are attributable to membrane thickness. The corresponding voltage shifts of electromotility were observed in outer hair cells. These results demonstrate that electromotility is extremely sensitive to the thickness of the plasma membrane, presumably involving hydrophobic mismatch. These observations indicate that the extended state of the motor molecule, which is associated with the elongation of outer hair cells, has a conformation with a shorter hydrophobic height in the lipid bilayer.  相似文献   

9.
10.
Membrane tubulin   总被引:5,自引:0,他引:5  
Tubulin has been identified as a membrane component of nerve synaptosomes and myelin, plasma membranes of platelets, thyroid, and tissue culture cells, brain and liver coated vesicles, mitochondria, and in cilia but not flagella of certain molluscs. Membrane tubulin can differ from cytoplasmic forms in isoelectric point, non-polar amino acid substitutions, lack of carboxy-terminal tyrosine, carbohydrate content, and selective ability to reassociate with lipids. This tubulin may function as an attachment site for binding vesicles or plasma membranes to cytoplasmic microtubules, as a source of precursor tubulin at the growing tips of axonemes, or as a component of signal transduction in sensory cilia.  相似文献   

11.
Membrane transport   总被引:31,自引:0,他引:31  
  相似文献   

12.
The literary data on the problem of the membrane biogenesis are generalized. The mechanisms of formation, possible ways of metabolism of biomembrane structure in cells and the ways of their degradation are considered. A conclusion has been made on the existence in the cells several types of movement as for the separate components and membrane fragments as well.  相似文献   

13.
Hyaline Membrane     
《BMJ (Clinical research ed.)》1959,2(5163):1392-1393
  相似文献   

14.
15.
Membrane fusion   总被引:16,自引:0,他引:16  
Jahn R  Lang T  Südhof TC 《Cell》2003,112(4):519-533
Membrane fusion, one of the most fundamental processes in life, occurs when two separate lipid membranes merge into a single continuous bilayer. Fusion reactions share common features, but are catalyzed by diverse proteins. These proteins mediate the initial recognition of the membranes that are destined for fusion and pull the membranes close together to destabilize the lipid/water interface and to initiate mixing of the lipids. A single fusion protein may do everything or assemblies of protein complexes may be required for intracellular fusion reactions to guarantee rigorous regulation in space and time. Cellular fusion machines are adapted to fit the needs of different reactions but operate by similar principles in order to achieve merging of the bilayers.  相似文献   

16.
17.
18.
The general relations between protein conformation and the optical activity of peptide chromophores are outlined and applied to the analysis of the optical rotatory dispersion and circular dichroism of the plasma membranes of human erythrocytes and Ehrlich ascites carcinoma cells. It is concluded that the proteins of these membranes are "globular" and that they have considerable helical content. The spectroscopic consequences of perturbing the membranes with phospholipase C, phospholipase A, lysolecithin, and sodium dodecyl sulfate are examined in the light of the effects of these agents upon certain enzymatic and physical properties of the membranes and upon their proton magnetic resonance spectra. The data suggest that the architecture of membrane proteins is strongly dependent upon apolar lipid-protein and/or lipid-sensitive protein-protein interactions.  相似文献   

19.
Membrane tension     
Kell DB 《Trends in cell biology》1996,6(5):171; author reply 171
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号