首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interferon-gamma enhances target cell sensitivity to monocyte killing   总被引:1,自引:0,他引:1  
The mechanism of human peripheral blood monocyte-mediated cytotoxicity was investigated using the HT-29 human colon adenocarcinoma line, A673 human rhabdomyosarcoma line, and A375 human melanoma line as target cells. Pretreatment of these target cells with 100 U/ml of recombinant human interferon (IFN)-gamma for 48 hr increased their susceptibility to monocyte killing. Increased susceptibility to the lytic action was particularly pronounced at low effector/target cell ratios. Unlike IFN-gamma human IFN-alpha did not potentiate monocyte cytotoxicity, and pretreatment of HT-29 with IFN-alpha also had virtually no effect on their susceptibility to monocyte killing. However, IFN-gamma appeared to prime either monocytes or target cells to become responsive to IFN-alpha. Our data suggest that IFN-gamma can promote the killing of tumor cells by monocytes through two separate actions, one on the monocyte and one on the target cell.  相似文献   

2.
Recombinant interferons (IFN-alpha, -beta, and -gamma) were examined for their effects on B cell activation. Relatively small IgM+ B cells from human blood samples were isolated by fluorescence-activated cell sorting and were used as target cells. Although the interferons themselves were nonmitogenic, each enhanced the proliferative response induced by a mitogenic anti-mu monoclonal antibody, with IFN-beta usually showing the greatest enhancement and IFN-gamma the least. Pretreatment with the interferons primed resting B cells to undergo enhanced DNA synthesis in response to the anti-mu antibody DA4. Conversely, anti-mu pretreatment, followed by IFN treatment, did not induce B cells to enter the S phase. Time-course analysis revealed that IFN could augment the anti-mu response even when added as late as the final 24 hr of a 3-day culture interval. Combinations of IFN-gamma plus IFN-alpha or -beta were synergistic in the anti-mu response, whereas the IFN-alpha plus IFN-beta combination was not. The data suggest that interferons produced by both lymphocytes (IFN-gamma) and nonlymphoid inflammatory cells (IFN-alpha and -beta) can enhance B cell growth via different mechanisms.  相似文献   

3.
The influences of human interferons--natural gamma (2 X 10(7) NIH reference U/mg), recombinant gamma (approximately 5 X 10(6) U/mg), natural alpha (1.4 X 10(8) international reference U/mg), and natural beta (10(6) international reference U/mg)--were evaluated alone or in combination for their effects in vitro on colony formation by low density human bone marrow granulocyte-macrophage (CFU-GM), erythroid (BFU-E), and multipotential (CFU-GEMM) progenitor cells incubated at 5% CO2 in normal incubator (approximately 20%) O2 tension or low (5%) O2 tension. Alone, these interferons demonstrated the same dose response inhibitory curves, as we reported previously, when cells were grown at 20% O2. Recombinant IFN-gamma gave the same dose response curve as natural IFN-gamma. Natural or recombinant interferon synergized with IFN-alpha to suppress colony formation at concentrations that were approximately 2 log units lower than that required by either interferon alone. Equal concentrations of these interferons were not needed for the synergistic effect and were still apparent when one was present at concentrations of 2 log units less than the other. IFN-gamma synergized to a lesser extent with IFN-beta, but IFN-alpha did not synergize with IFN-beta. Cells grown at 5% O2 were more sensitive to inhibition by 2 log units less IFN-gamma or IFN-alpha, and this effect was additive with the synergistic effects of IFN-gamma and IFN-alpha together. These results may have physiological, pathological, and/or clinical relevance.  相似文献   

4.
Interferons-alpha, -beta and -gamma (IFNs-alpha, -beta and -gamma) stimulated the synthesis of the second complement component (C2), Factor B (B) and C1 inhibitor (C1-inh) by human monocytes in vitro. The degree of increase of the secretion rates of C2, B and C1-inh was dose-dependent and proportional to increases in the abundances of their respective mRNAs. IFN-gamma was the most effective at stimulating monocyte C1-inh synthesis, whereas IFN-alpha and IFN-beta were marginally more effective at stimulating monocyte C2 and B synthesis. Kinetic studies showed that the effect of the IFNs was rapid, with maximum stimulation occurring within 1-2 h for all three proteins. After the removal of IFNs from cultures the C1-inh mRNA abundance remained elevated for over 24 h in IFN-gamma-treated monocytes but returned to control levels within 8 h in IFN-alpha-treated and IFN-beta-treated monocytes. The abundances of C2 mRNA and B mRNA also returned to basal values within 8 h after removal of any of the three cytokines from the cultures. Both IFN-alpha and IFN-beta acted synergistically with IFN-gamma to stimulate synthesis of C1-inh and B. This synergistic effect only occurred when the cytokines were present in the cultures simultaneously. The effects of IFN-gamma plus IFN-alpha or IFN-beta on C2 synthesis appeared to be additive rather than synergistic. IFN-gamma inhibited synthesis of C3 by monocytes, but IFN-alpha and IFN-beta had no effect on the synthesis of this protein. Furthermore, none of the three cytokines had any effect on the expression of actin mRNA in monocytes.  相似文献   

5.
Monocyte complement stimulator (MCS), a product of T lymphocytes, is defined by its ability to stimulate the synthesis and secretion of the second complement component (C2) by monocytes. Most macrophage-activating factor (MAF) activity present in lymphokine-rich culture supernatants has recently been found to be due to interferon-gamma (IFN-gamma). We therefore hypothesized that IFN-gamma may have MCS activity as well. We tested recombinant, E. coli-derived, human IFN-gamma (rIFN-gamma) for its effects on C2 production by adherent peripheral blood monocytes and U937 cells, a human monocytic cell line. Recombinant IFN-gamma in concentrations ranging from 0.1 to 300 U/ml (0.003 to 8.8 ng/ml) stimulates C2 production by both cell populations. Exposure of responding cells for at least 24 hr is required for maximal stimulation. To determine the contribution of IFN-gamma toward total MCS activity in crude lymphokine-rich supernatants, we employed a solid-phase immunoabsorption technique with the use of a monoclonal anti-IFN-gamma antibody. This technique removed all IFN-gamma detectable by a sensitive ELISA, but MCS activity was decreased by only 40 to 50%. Additionally, MCS activity of these supernatants did not correlate with IFN-gamma content as determined by ELISA. By using another method to eliminate IFN-gamma activity, acid dialysis destroyed all rIFN-gamma activity, as measured by stimulation of U937 C2 synthesis, but eliminated only 30 to 67% of MCS activity from crude lymphokine preparations. Thus IFN-gamma stimulates C2 production by monocytes and U937 cells and apparently accounts for some, but not all, MCS activity present in lymphokine-rich supernatants. Other lymphokines are present in such supernatants that also possess this activity.  相似文献   

6.
To determine the potential immunotherapeutic role of interferon-gamma (IFN-gamma) as a mononuclear phagocyte-activating agent, we examined the effector cell function of peripheral blood monocytes from healthy donors and acquired immunodeficiency syndrome (AIDS) patients after either in vitro and/or in vivo treatment with recombinant (r) IFN-gamma. When assayed immediately after a 24-hr in vitro pulse with 300 U/ml, normal and AIDS monocytes behaved similarly with little augmentation of their intrinsically high levels of H2O2 release and activity against Toxoplasma gondii; in contrast, activity toward the more resistant intracellular pathogen, Leishmania donovani, was appreciably enhanced by rIFN-gamma. In addition, upon testing 4 to 6 days after in vitro pulsing, both normal and AIDS monocytes showed clear evidence of persistent activation in all three assays. The capacity of IFN-gamma to similarly activate monocytes in vivo was confirmed in all ten treated AIDS patients by examining cells before and after 24-hr infusions of 0.03 and 0.5 mg of rIFN-gamma/square meter (M2) of body surface area. For postinfusion monocytes tested after 1 day in culture, H2O2 release and antitoxoplasma activity were essentially unchanged, but antileishmanial effects were augmented. After 5 to 7 days in culture, monocytes from treated patients showed 3.2- to 5.9-fold increases in H2O2-releasing capacity and increases of 49 to 68% and 35 to 61% in intracellular activity against T. gondii and L. donovani, respectively. These results indicate that the human monocyte can be induced by rIFN-gamma to express signs of both immediate and persistent activation and suggest that, as a direct activator of mononuclear phagocytes, rIFN-gamma may also have potential as an immunotherapeutic agent for patients with intracellular infections.  相似文献   

7.
J Le  J Vilcek 《Cellular immunology》1984,85(1):278-283
Purified natural and recombinant human immune interferon (IFN-gamma) were found to activate human monocytes from peripheral blood to exert enhanced cytotoxicity against human colon adenocarcinoma HT-29 cells. A marked monocyte activation was observed at low concentrations (1 and 10 U/ml) of IFN-gamma. Marked monocyte activation was also obtained with two lymphokine preparations, produced in peripheral blood mononuclear cell (PBM) cultures induced with phytohemagglutinin (PHA) or by combined stimulation with PHA and 12-O-tetradecanoylphorbol 13-acetate (TPA). The component responsible for macrophage activation in such lymphokine preparations in the past was considered to be "macrophage-activating factor" (MAF). When monoclonal antibody specifically neutralizing IFN-gamma was added to these lymphokine preparations, all MAF activity disappeared, indicating that IFN-gamma is the sole protein showing MAF activity in these preparations.  相似文献   

8.
Previous work has shown that normal human monocytes can augment natural killer (NK) cell activity both when mixed with enriched null cells in the assay and when precultured with enriched null cells and removed prior to testing. The data presented here show that a 4-hr preculture period is superior to slightly longer periods (10-12 hr) for demonstrating the augmentation. The role of cytokines in the monocyte effect was then investigated using a variety of antibody and recombinant reagents. Both monoclonal and rabbit polyclonal antibodies to IL-1 and IL-2 inhibited the monocyte effect, whereas antibodies against IFN-alpha and IFN-gamma from both sources had no effect. Of these cytokines, only IL-1 could be demonstrated (using a sensitive IL-1-dependent-IL-2 synthesis assay) in the supernatants of 4-hr cultures of monocytes plus null cells or null cells only. The ability to detect IL-1 was specifically inhibited by rabbit antibody to human IL-1 at 1:20 and 1:200 dilutions, but only the greater concentration inhibited the monocyte effect on NK activity. In contrast, the detection of soluble IL-1 was not inhibited by including monoclonal anti-IL-1 (1:20 dilution) in the 4-hr culture, although the same reagent abrogated the monocyte effect under these conditions. Recombinant IL-1 (up to 100 units/ml) did not augment NK activity either when added to the assay or when precultured for 4 hr with enriched null cells, whereas either recombinant IL-2 or monocytes were effective under these conditions. These results provide the first evidence for a cellular, and potentially physiologic, basis for the regulation of NK activity by IL-1 and IL-2, which had been previously known to act at pharmacologic levels in vitro.  相似文献   

9.
Activation of human peripheral blood mononuclear cells (PBMC) by interleukin 2 (IL 2) and the role of interferon-gamma (IFN-gamma) in the IL 2-induced activation were investigated. Activated killer (AK) cells against NK-resistant tumor cell lines were induced in the medium containing recombinant IL 2 (rIL 2) and autologous serum without any other stimulating agents. AK activity was induced by doses of rIL 2 as low as 3 U/ml, and reached a maximum at 10(3) U/ml. Incubation of PBMC with rIL 2 resulted in IFN-gamma production and augmented NK activity after 1 day of culture, and in induction of AK cells and proliferative response after 2 days of culture. These results suggested that endogenous IFN-gamma was required for rIL 2-induction of AK cells and proliferative response. To prove this, PBMC were cultured with rIL 2 and rIFN-gamma or were pretreated with rIFN-gamma before culture with rIL 2. Both rIFN-gamma treatments of PBMC augmented rIL 2-induced AK activity and proliferative response. rIL 2-induced IFN-gamma production was also enhanced by the rIFN-gamma pretreatment of PBMC. The addition of anti-IFN-gamma antibody to rIL 2 cultures abrogated the rIL 2-induced NK augmentation, AK generation, and proliferative response in proportion to the decreased amounts of endogenous IFN-gamma detectable in culture. rIFN-gamma and/or rIL 2 cultures of PBMC increased Tac antigen expression on cell surfaces as measured by flow cytometry. Enhanced Tac expression by rIL 2 was abrogated by adding anti-IFN-gamma antibody. These data indicate that: 1) AK generation and IFN-gamma production are mediated by IL 2, and 2) IFN-gamma production may be required for IL 2 induction of AK cells and proliferative response. These finding are consistent with the hypothesis that AK generation involves a collaboration between IL 2 and IFN-gamma, in which IL 2 stimulates PBMC to produce IFN-gamma, which in turn acts as a differentiation signal that may be involved in the IL 2-initiated AK generation and proliferative response.  相似文献   

10.
IFN-kappa is a recently identified type I IFN that exhibits both structural and functional homology with the other type I IFN subclasses. In this study, we have investigated the effect of IFN-kappa on cells of the innate immune system by comparing cytokine release following treatment of human cells with either IFN-kappa or two recombinant IFN subtypes, IFN-beta and IFN-alpha2a. Although IFN-alpha2a failed to stimulate monocyte cytokine secretion, IFN-kappa, like IFN-beta, induced the release of several cytokines from both monocytes and dendritic cells, without the requirement of a costimulatory signal. IFN-kappa was particularly effective in inhibiting inducible IL-12 release from monocytes. Unlike IFN-beta, IFN-kappa did not induce release of IFN-gamma by PBL. Expression of the IFN-kappa mRNA was observed in resting dendritic cells and monocytes, and it was up-regulated by IFN-gamma stimulation in monocytes, while IFN-beta mRNA was minimally detectable under the same conditions. Monocyte and dendritic cell expression of IFN-kappa was also confirmed in vivo in chronic lesions of psoriasis vulgaris and atopic dermatitis. Finally, biosensor-based binding kinetic analysis revealed that IFN-kappa, like IFN-beta, binds strongly to heparin (K(d): 2.1 nM), suggesting that the cytokine can be retained close to the local site of production. The pattern of cytokines induced by IFN-kappa in monocytes, coupled with the unique induction of IFN-kappa mRNA by IFN-gamma, indicates a potential role for IFN-kappa in the regulation of immune cell functions.  相似文献   

11.
Partially purified natural human IFN-gamma has been shown to induce the synthesis of a set of unique polypeptides that are not induced by comparable amounts of IFN-alpha and IFN-beta. In addition, a set of polypeptides is induced in common by all three IFNs. The present study utilized a pure recombinant IFN-gamma and a monoclonal antibody against IFN-gamma to investigate whether the unique polypeptide-inducing properties previously reported are due to IFN-gamma itself. With the possible exception of two polypeptides, the results demonstrate conclusively that IFN-gamma is the sole molecular species responsible for the induction of all polypeptides, including those whose induction pattern is unique to IFN-gamma. Very high doses of IFN-alpha and IFN-beta induce some of the latter set of polypeptides to a limited extent. Thus the differential effects of IFN-gamma compared to IFN-alpha and IFN-beta are, in part, quantitative rather than qualitative in nature.  相似文献   

12.
Macrophages are pivotal cells in interactions of man and leishmania. Leishmanial disease results from intracellular infection of macrophages: parasitized cells are seen in smears or biopsy specimens of lesions; macrophages cultured in vitro support replication of parasites. Paradoxically, parasite destruction is also mediated by macrophages, which become highly cytotoxic after exposure to immune lymphocytes or their lymphokine (LK) products. The precise molecular mechanisms by which lymphocytes or LK induce macrophage activation for leishmanicidal activity, however, are not yet known. We analyzed interactions of leishmania amastigotes with human monocytes cultured in vitro as a nonadherent cell pellet. Leishmania donovani and L. major replicated in freshly isolated monocytes. Monocytes treated with greater than 200 IU/ml of the LK, human Interferon-gamma (IFN-gamma), destroyed tumor cells and L. donovani, but not L. major. Phorbol myristate acetate, endotoxic bacterial lipopolysaccharide, and recombinant human IFN-alpha and IFN-beta did not induce cytotoxicity. The time course for induction of cytotoxicity contrasted sharply with that of previously described monocyte antileishmanial activity: IFN-gamma induced cytotoxicity even when added after infection with L. donovani; induction of cytotoxicity did not require that IFN-gamma be present throughout the period of culture after infection: a 30-min preinfection pulse of IFN-gamma was sufficient to induce 70% of maximal activity; and freshly isolated monocytes and cells cultured for up to 4 days in vitro prior to infection and IFN-gamma treatment were equally responsive to IFN-gamma. These studies provide convincing evidence for intracellular cytotoxicity for L. donovani by freshly isolated human monocytes. This system provides an important base for further analysis of induction and expression of cytotoxic mechanisms against leishmania and other intracellular organisms that cause human disease.  相似文献   

13.
The human cell line K562 was treated with human natural leukocyte interferon (IFN-alpha) and recombinant immune interferon (IFN-gamma). Cell cultures exposed to both types of IFNs displayed a reduced susceptibility to the cytotoxic activity of human PBL (NK activity). While this effect occurred preferentially at high doses of IFN-alpha, as little as 10 U/ml of IFN-gamma caused a marked decrease in susceptibility to NK-cell-mediated lysis. Using a monoclonal antibody against human beta2-microglobulin (beta2M) a low level of specific binding to K562 cells was detected. The binding increased after treatment with IFN-alpha (1.4-fold) and IFN-gamma (1.7-fold). The expression of transferrin receptors (TR) was not changed significantly. A hybrid cell line between K562 and a Burkitt's lymphoma-derived cell line displayed a similar pattern of response to IFN-alpha and IFN-gamma as did K562, when effects on NK susceptibility, beta2M expression, and TR expression were studied. The Burkitt's lymphoma line PUT showed no consistent changes in expression of beta2M and TR. These results demonstrate that IFN-gamma is highly efficient in modulating the NK susceptibility, and the expression of beta2M on K562. The presented data do not support a role for expression of TR as the only property that determines the degree of NK susceptibility, since there was no correlation between NK susceptibility and TR expression among the cell lines tested or when IFN-treated and untreated cells were compared.  相似文献   

14.
The effect of IFN-alpha and IFN-beta on the expression of cell surface receptors for tumor necrosis factor (TNF) was examined in two human cell lines. In HeLa cells, IFN-alpha and IFN-beta increased 125I-TNF binding, whereas in HT-29 cells these two IFN either slightly decreased or had no effect on 125I-TNF binding. In contrast, IFN-gamma increased 125I-TNF binding in both cell lines. Both IFN-alpha and IFN-beta exerted an antagonistic effect on IFN-gamma-induced stimulation of TNF receptor expression in HT-29 cells, but did not inhibit TNF receptor induction by IFN-gamma in HeLa cells. IFN-gamma and, to a lesser extent, IFN-beta were synergistic with TNF in producing cytotoxic/cytostatic activity in HT-29 cells. Despite the inhibitory effect of IFN-beta on the IFN-gamma-induced stimulation of TNF receptor expression, IFN-beta did not inhibit the synergistic enhancement of TNF cytotoxicity by IFN-gamma in HT-29 cells. The dissociation between the effects of IFN-beta on TNF receptor expression and on the cytotoxic activity of TNF in HT-29 cells suggests that TNF receptor modulation is not a major mechanism of synergism between IFN and TNF.  相似文献   

15.
The cell surface expression of I region-associated (Ia) antigens by murine and human macrophages has been shown by investigators from a number of laboratories to be induced in a dose-dependent fashion by IFN-gamma, which is free of other lymphokines. The experiments described in this report demonstrate that fibroblast-derived IFN-beta exerts an antagonistic effect on IFN-gamma induced Ia expression in murine macrophages. Simultaneous addition of IFN-beta and IFN-gamma to peritoneal exudate macrophages results in decreased Ia expression when compared with macrophages treated with IFN-gamma only. Different sources of highly purified IFN-beta, as well as a recombinant human IFN-alpha (A/D Bgl; shown previously to be as active as IFN-beta in several other murine systems) acted in a similar antagonistic fashion to IFN-gamma-induced Ia induction. The down-regulation of Ia expression by IFN-beta is dose-dependent over a concentration range up to 100 U/ml. Time-course experiments indicated that for IFN-beta to down-regulate IFN-gamma-induced Ia, it had to be present either before stimulation with IFN-gamma or during the first 24 hr of simultaneous stimulation. Further experiments in which a highly specific antibody against IFN-alpha/beta was added to the cultures confirmed the findings of the time-course experiments. Inhibitors of the arachidonic acid pathway failed to reverse the effect of IFN-beta to reduce Ia antigen expression, which suggests that this inhibition is not prostaglandin mediated. Thus, these findings support a role for type I IFN as naturally occurring substances that negatively regulate the expression of class II molecules.  相似文献   

16.
Macrophages derived from human peripheral blood and cultured for 1 week were permissive for the replication of herpes simplex virus (HSV) types 1 and 2. Low titers of interferon (IFN) were produced after virus infection. The yield of infectious virions was reduced by pretreatment of cells with natural and recombinant IFN-alpha and natural IFN-beta. Recombinant and natural IFN-gamma exhibited very low antiviral activity. Treatment of cells with IFN-gamma mixed with IFN-alpha or with IFN-beta did not result in a synergistic inhibition of virus yield. We studied the synthesis of HSV type 1- and HSV type 2-coded proteins in macrophages treated with IFN-beta. Induction of the HSV beta-protein DNA polymerase was strongly inhibited in IFN-treated cells in a dose-dependent manner. As shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, other beta- and gamma-proteins of HSV were inhibited as well. Immunofluorescence studies revealed a strong inhibition of the expression of immediate early alpha-protein ICP4. The results indicate that IFN acts early during the viral replication cycle to inhibit the synthesis of HSV alpha- and beta-proteins.  相似文献   

17.
The biological response modifier OK-432 has been shown both to exert the enhancement of several immunological activities and to have a direct anti-tumor effect. The present study examines the immunopotentiating effect of OK-432 on peripheral blood monocytes (PBM) derived from normal humans. Monocyte activation was assessed by examining direct cell-mediated cytotoxic activity (CMC) and secretion of cytotoxic factors in the supernatant by the 51Cr release assay and secretion of tumor necrosis factor (TNF)-alpha detected by a sensitive radioimmunoassay. The OK-432-augmented activity was compared to that achieved by recombinant interferon-gamma (rIFN-gamma). Coculture of PBM with OK-432 overnight resulted in significant augmentation of CMC and secretion of cytotoxic factors and TNF in the supernatant. The effects observed were dose dependent and the resulting activity was much more pronounced than that achieved with an optimal concentration of IFN-gamma. The monocyte- and supernatant-mediated cytotoxic activities were in a large part attributed to TNF as both activities were inhibited by anti-TNF antibody. Several parameters of monocyte activation by OK-432 were examined. The kinetics of monocyte activation revealed that a short time exposure (2-6 hr) was sufficient for activation but maximal activation was detected after 18 hr. However, the kinetics of the cytotoxic assay were not shortened and 16-20 hr was necessary for optimal cytotoxic activity. Significant synergy was obtained when suboptimal concentrations of OK-432 and IFN-gamma were used. The synergy was noted in CMC, supernatant activity, and TNF concentration. These results demonstrate that OK-432 is a potent activator of monocyte cytotoxicity and also activates secretion of TNF. Also, OK-432 is a much more potent activator than rIFN-gamma. The synergy with OK-432 and IFN-gamma suggests that OK-432-mediated activation of monocytes takes place by a different mechanism than that mediated by rIFN-gamma. Thus, monocytes and products thereof may actively participate in the in vivo anti-tumor effect mediated by OK-432.  相似文献   

18.
Human T cell hybridomas were established by fusion of SH9 cells, the 6-thioguanine-resistant mutant line of human T lymphoma Hut 102-B2, with concanavalin A-stimulated human peripheral blood lymphocytes. Hybridoma line L38 produced a macrophage activating factor (MAF) with the ability to activate human peripheral blood monocytes to show enhanced cytotoxicity against human colon adenocarcinoma HT-29 cells in a 72-hr 125iododeoxyuridine-release assay. The L38 line was then cloned by the limiting dilution technique and two sublines, L38B and L38D, were found to produce high levels of MAF constitutively. Interferon activity was also detected in L38B and L38D supernatants. When interferon activity was neutralized with specific antiserum to purified human immune interferon (IFN-gamma), MAF activity was abrogated. To confirm that the MAF activity is indeed due to IFN-gamma, IFN-gamma was purified from the culture supernatant of another human T cell hybridoma, L265K2, a cell line known to produce high levels of IFN-gamma. Two highly purified IFN-gamma fractions with m.w. of 20,000 and 25,000, respectively, were obtained by NaDodSO4/polyacrylamide gel electrophoresis (SDS-PAGE). Similar fractions were obtained from IFN-gamma derived from human peripheral blood lymphocyte (PBL) cultures induced with 12-0-tetradecanoylphorbol-13-acetate (TPA) and phytohemagglutinin (PHA). In comparison, Escherichia coli-derived recombinant human IFN-gamma separated by SDS-PAGE yielded two major active fractions with m.w. of 17,000 and 34,000. With all three types of preparations, a close correlation was found between the presence of IFN-gamma activity demonstrable in an antiviral assay and MAF activity in individual fractions. Substantial quantitative differences were observed in the ability of various human IFN to activate monocytes. Although no MAF activity was detected with IFN-alpha and IFN-beta at concentrations up to 200 U/ml, both natural and recombinant IFN-gamma showed marked MAF activity at concentrations as low as 0.3 to 1 U/ml.  相似文献   

19.
Ontogenic development and the lymphokine responsiveness of human NK cell activity against K562 target cells in peripheral blood lymphocytes were evaluated in fetuses, premature infants, and term neonates by using a 4-hr 51Cr-release assay. Basal NK activity and NK boosting by lymphokines were comparatively assayed after an 18-hr incubation with medium alone, recombinant human IFN-gamma (1000 U/ml), and recombinant human IL 2 (25 U/ml), respectively. Lymphocytes from 20-wk-old fetuses lacked NK cell activity even after the pretreatment with IFN-gamma. Low, but significant levels of NK activity and NK boosting by IFN-gamma were observed in premature infants after 27 wk of gestation, with a progressive intrauterine maturation of these activities. Both basal NK activity and NK boosting by IFN-gamma in term neonates were still lower than those of adult controls. The grade of NK boosting by IFN-gamma appeared to depend on the development of basal NK activity. Contrary to IFN-gamma, IL 2 could induce marked NK activity even in 20-wk-old fetuses who lacked both basal and IFN-gamma inducible NK activities. NK boosting by IL 2 was much more efficient than that by IFN-gamma at any period of human life. The facts that IL 2-induced NK boosting could occur without any appreciable production of IFN-gamma in neonatal lymphocytes, and that ample neutralizing doses of anti-IFN-gamma antibody hardly suppressed IL 2-mediated NK boosting even in adult lymphocytes, indicated that the effect of IL 2 on NK boosting might be independent of IFN-gamma production. On the basis of the ontogenic differences in the development of the lymphokine responsiveness of NK cell activity and on the different NK boosting mechanisms of these lymphokines it was suggested that so-called human "pre-NK cells" might be divided into IFN-gamma sensitive and IL 2-sensitive cells. Whether these cell populations belong to different cell lineages or different maturation stages of the same cell line, however, remains unsettled.  相似文献   

20.
Both native human IFN-beta or -gamma added to human monocytes in culture increased their leishmaniacidal effect on intracellular Leishmania tropica major (L. major) amastigotes. This effect was dose-dependent, and was apparent if the IFN was added either before or after infection of the monocyte cultures with the promastigote form of the parasite. Compared on the basis of antiviral activity, IFN-gamma was shown to have a leishmaniacidal effect approximately three times greater than IFN-beta. Recombinant IFN preparations showed similar effects. In addition, IFN-gamma increased H2O2 production from human monocytes in culture in a dose-dependent manner. Monoclonal antibody to IFN-gamma abrogated both its effect on the leishmaniacidal capacity and on H2O2 production by the monocytes. These results suggest that IFN-gamma may be of therapeutic value in cutaneous leishmaniasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号