首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Mitochondrial DNA (mtDNA) from petite strain K45 ofSaccharomyces cerevisiae contains about 7% circular DNA molecules which comprise a simple oligomeric series based on a monomeric size of 1.7 kilobase pairs. Electrophoresis of K45 mtDNA on a polyacrylamide-agarose slab gel fractionates the mtDNA into a major band (containing linear DNA) and several faster running minor bands each containing particular size class of circular DNA molecules. From study of mtDNA from K45 and two other simple petites it was found that the mobility of circles is inversely proportional to the logarithm of the circle size. Polyacrylamide gel electrophoresis thus permits the separation of circular mtDNA from the linear mtDNA of simple petites, and physically resolves circles of different size from one another.  相似文献   

2.
In vivo pulse-chase radioactive labeling studies were performed to localize within the physical map of C13B4 hamster mtDNA2 the two terminal regions of heavy and light complementary strand synthesis. These terminal segments have been defined operationally as that region on the H- and L-strand that is synthesized last. mtDNA of monolayer cultures was pulsed with [3H]thymidine for a minimum period of 10 minutes, which is about one-tenth of one round of mtDNA synthesis, followed by chase periods of up to 120 minutes. The properties of the labeled closed circular replicative intermediates E-mtDNA, C-mtDNA and D-mtDNA were analyzed in CsClPrI2 gradients and in neutral sucrose velocity and alkaline CsCl gradients. Both terminally labeled α and β daughter molecules were found to pass through the E-mtDNA stage. Sensitivity of C13B4 mtDNA to alkali and ribonuclease A indicated the presence of covalently linked ribonucleotides. The distribution (specific activity) of pulse-chase radioactivity relative to uniform label was followed in electrophoretically separated HpaII + HinIII and HpaI restriction fragments (freed of 7 S initiation sequences) and corrected for thymine content. The strand specificity of the pulse-label was determined by hybridization of restriction fragments with H- and L-strands of mtDNA. The kinetic data agree precisely with electron microscopic determinations of H- and L-strand origins at respective genome positions of 0 and 67 ± 3, which are located on HpaII + HindIII fragments 9 and 6, respectively (Nass, 1980). The two terminal regions are within the predicted genome sector between about 67 and 100/0 map units; the highest terminal pulse-chase radioactivity extends within 5 to 15% of the genome's length behind each origin. The kinetics of early labeling events were found to differ at the two termini. The evidence indicates that the majority of L-strand initiation/termination sites are in the region near map position 67 ± 3, and confirms the highly asynchronous replication mechanism of this DNA.  相似文献   

3.
This paper describes the physical mapping of five antibiotic resistance markers on the mitochondrial genome of Saccharomyces cerevisiae. The physical separations between markers were derived from studies involving a series of stable spontaneous petite strains which were isolated and characterized for the loss or retention of combinations of the five resistance markers. DNA-DNA hybridization using 32P-labelled grande mitochondrial DNA was employed to determine the fraction of grande mitochondrial DNA sequences retained by each of the defined petite strains.One petite clone retaining four of the markers in a segment comprising 36% of the grande genome was then chosen as a reference petite. The sequence homology between the mitochondrial DNA of this petite and that of the other petites was measured by DNA-DNA hybridization. For each petite, the total length of its genome derived by hybridization with grande mitochondrial DNA and the fraction of the grande genome retained in common with the reference petite, together with the genetic markers retained in common, were used to position the DNA segment of each petite relative to the reference petite genome. At the same time the relative physical location of the five markers on a circular genome was established. On the basis of the grande mitochondrial genome being defined as 100 units of DNA, the positions of the markers were determined to bo as follows, measuring from one end of the reference petite genome. chloramphenicol (cap1) ~ 0 units erythromycin (ery1) 0 to 15 units oligomycin (oli1) 18 to 19 units mikamycin (mik1) 22 to 25 units paromomycin (par1) 61 to 73 unitsThe general problems of mapping mitochondrial genetic markers by hybridizations involving petite mitochondrial DNA are discussed. Two very important features of petite genomes which could invalidate the interpretation of DNA-DNA hybridization experiments between petite mitochondrial DNAs are the possible presence in the reference petite of differentially amplified DNA sequences, and/or “new” sequences which are not present in the parent grande genome. A general procedure, which overcomes errors of interpretation arising from these two features is described.  相似文献   

4.
Wild-type yeast mitochondrial DNA (mtDNA) is inherited biparentally, whereas mtDNA of hypersuppressive petite mutants is inherited uniparentally in crosses to strains with wild-type mtDNA. Genomes of hypersuppressive petites contain a conserved ori sequence that includes a promoter, but it is unclear whether the ori confers a segregation or replication advantage. Fluorescent in situ hybridization analysis of wild-type and petite mtDNAs in crosses reveals no preferential segregation of hypersuppressive petite mtDNA to first zygotic buds. We identify single-stranded DNA circles and RNA-primed DNA replication intermediates in hypersuppressive petite mtDNA that are absent from non-hypersuppressive petites. Mutating the promoter blocks hypersuppressiveness in crosses to wild-type strains and eliminates the distinctive replication intermediates. We propose that promoter-dependent RNA-primed replication accounts for the uniparental inheritance of hypersuppressive petite mtDNA.  相似文献   

5.
Summary Mitochondrial DNA (mtDNA) replication in petite mutants ofSaccharomyces cerevisiae is generally less sensitive to inhibition by ethidium bromide than in grande (respiratory competent) cells. In every petite that we have examined, which retain a range of different grande mtDNA sequences, this general phenomenon has been demonstrated by measurements of the loss of mtDNA from cultures grown in the presence of the drug. The resistance is also demonstrable by direct analysis of drug inhibition of mtDNA replication in isolated mitochondria. Furthermore, the resistance to ethidium bromide is accompanied, in every case tested, by cross-resistance to berenil and euflavine, although variations in the levels of resistance are observed.In one petite the level of in vivo resistance to the three drugs was very similar (4-fold over the grande parent) whilst another petite was mildly resistant to ethidium bromide and berenil (each 1.6-fold over the parent) and strongly resistant (nearly 8-fold) to inhibition of mtDNA replication by euflavine. The level of resistance to ethidium bromide in several other petite clones tested was found to vary markedly. Using genetic techniques it is possible to identify those petites which display an enhanced resistance to ethidium bromide inhibition of mtDNA replication.It is considered that the general resistance of petites arises because a product of mitochondrial protein synthesis is normally involved in facilitating the inhibitory action of these drugs on mtDNA synthesis in grande cells. The various levels of resistance in petites may be modulated by the particular mtDNA sequences retained in each petite.  相似文献   

6.
A series of spontaneous cytoplasmic petite mutants was isolated from a grande strain of Saccharomyces cerevisiae doubly marked with the cytoplasmically inherited determinants to erythromycin and oligomycin resistance. The petites were characterized with regard to the genetic stability of these antibiotic resistance markers and to their degree of suppressivity. No relation was found between the genetic instability of a petite mutant and the degree of suppressivity exhibited by that mutant. Three petites of 19.4%, 57.4% and 90.4% suppressivity were selected and their mitochondrial DNA characterized with regard to molecular weight, buoyant density in analytical cesium chloride density gradients, and the percentage of the total cellular DNA represented by the mitochondrial DNA. From these results it appears that the molecular weight of the mitochondrial DNA of the petite strains examined is the same as that shown by the parental grande strain, regardless of the degree of suppressivity exhibited.  相似文献   

7.
The DNA of cotton, Gossypium hirsutum, has been characterized as to spectral characteristics, buoyant density in CsCl, base composition, and genetic complexity. The haploid genome size is found to bo 0.795 pg DNA/cell. However, the amount of DNA per cell in the cotyledons increases during embryogenesis to an average ploidy level of 12N in the mature seed cotyledons. Reassociation kinetics indicate that this increase is due to endoreduplication of the entire genome.Non-repetitive deoxynucleotide sequences account for approximately 60.5% of the cotton genome (C0t12pure5 = 437); highly repetitive sequences (> 10,000 repetition frequency) constitute about 7.7% of the genome. (C0t12pure = 4.6 × 10?4) and intermediately repetitive sequences constitute the remaining 27% of the genome (C0t12pure = 1.46). Hybridization of 125I-labeled cytoplasmic ribosomal RNA to whole-cell DNA on filters and in solution indicate approximately 300 to 350 copies of the rRNA cistrons per haploid genome.The interspersion of repetitive sequences that reassociate between C0t values of 0.1 and 50 with non-repetitive sequences of the cotton genome has been examined by determining the reassociation kinetics of DNA of varying fragment lengths and by the electron microscopy of reassociated molecules. About 60% of the genome consists of non-repetitive regions that average 1800 base-pairs interpersed with repetitive sequences that average 1250 base-pairs. Approximately 20% of the genome may be involved in a longer period interspersion pattern containing non-repetitive sequences of approximately 4000 base-pairs between repetitive sequences. Most of the individual sequences of the interspersed repetitive component are much smaller than the mass average size, containing between 200 and 800 base-pairs. Sequence divergence is evident among the members of this component.Highly repetitive sequence elements that are reassociated by a C0t value of 0.1 average 2500 base-pairs in length, appear to have highly divergent regions and do not appear to be highly clustered. A portion of this highly repetitive component reassociates by C0t = 10?4, zero-time binding DNA, and accounts for less than 3% of the genome. At least a third of these sequences appear by electron microscopy to be intramolecular duplexes (palindromes) of 150 to 200 base-pairs and to occur in clusters.  相似文献   

8.
9.
Catalytic activity of thymidylate synthase, as measured in, vivo, is tightly linked to S phase of the cell cycle in Chinese hamster embryo fibroblast cells. This activity, as measured in, vitro, is found in all parts of the cell cycle. Thymidylate synthase activity in nuclear (karyoplast) extracts increased as the cells progressed from G0G1 to S phase. This enzymatic activity in the nuclei of S phase cells is associated with the multienzyme complex (replitase) that also contained DNA polymerase and other enzymes of DNA replication and precursor synthesis. The degree of association of thymidylate synthase with replitase, which increased co-ordinately as the cells progressed from G0G1 phase to S phase, coincided strongly with the level of in, vivo activity of the enzyme.  相似文献   

10.
Oxygenation of heme-mercaptide as well as spectroscopic characteristics of the dioxygen complex formed have been studied. Absorption and magnetic circular dichroism spectra of the O2 complex support the retention of mercaptide in the heme fifth position. A release of O2? in the decomposition of the oxygenated complex and an independent formation of the latter from hemine-dimercaptide and O2? together with electron paramagnetic resonance and Mössbauer data support the O2 presence in the heme coordination sphere. The similarity of optical and magnetic circular dichroism spectra and the closeness of the KCOKO2 ratio for oxy-heme-mercaptide and oxycytochrome P450 unequivocally confirm the presence of an axial cystein mercaptide ligand in oxycytochrome P450.  相似文献   

11.
Summary The proportion of total cell DNA which is mitochondrial DNA was measured in haploid, diploid and tetraploid strains of S. cerevisiae grown under a standard set of conditions. For all strains tested the mitochondrial DNA level was in the range 16%–25% of total cell DNA. Repeated measurements of the cellular level of mitochondrial DNA in two haploid strains showed that these strains have measurably different cellular mitochondrial DNA levels (17% and 24% of total DNA, respectively) under our conditions. These two grande strains were used to investigate the role of the mitochondrial and nuclear genomes in the regulation of the mitochondrial DNA level. We have shown by genetic analysis that the difference between these two strains is determined by at least two nuclear genes. The mitochondrial genome is not involved in the regulation of cellular mitochondrial DNA levels.A number of purified petite clones derived from independent spontaneous petite isolates of the grande strain which contained 24% mitochondrial DNA were also studied. The mitochondrial DNA levels in all but one of these petites fell in the range 20–25% of total cell DNA. From these results we conclude that, in general, the mitochondrial DNA level in petite strains is controlled by the same mechanism as operates in grande strains.We propose a general model for the control of the cellular mitochondrial DNA level, in which the amount of mitochondrial DNA per cell is determined by regulation of the number of mitochondrial DNA molecules per cell. This regulation is mediated through the availability of a set of nuclear coded components, possibly a mitochondrial membrane site, which are required for the replication of mitochondrial DNA.  相似文献   

12.
Rat liver nuclear and cytoplasmic DNA samples were denatured and the kinetics of their reassociation was measured. About 85% of the soluble cytoplasmic (mitochondrial) DNA reannealed rapidly with a Cot12 = 0.03 while 65% of the particulate (microsomal) DNA reassociated with a Cot12 = 0.14 Both nucleic acids were clearly differentiated from nuclear DNA in their reassociation kinetics. The results indicate that both mitochondrial and microsomal DNA consist mainly of single components or closely related families with repetitive sequences.  相似文献   

13.
The primary sequence of the principal spacer region in X. laevis oocyte 5S DNA has been determined. The spacer is AT-rich and comprises half or more of each repeating unit. The sequence is internally repetitious; most of it can be represented by the following set of oligonucleotides:
CAACAGTTTTCAAAAGGTTTGCAAGTTTTT(T)
The spacer, which varies in length from about 360 to 570 or more nucleotides, can be subdivided into a region (A2) which is variable in length in different repeating units, flanked by regions (A1, A3, B1) which are relatively constant in length. The A2 region consists, on the average, of 5–6 tandem copies of the oligonucleotide CAAAGTTT-GAGTTTT; variation in the redundancy of this oligonucleotide accounts for much of the repeat length variation in the genomic 5S DNA. Most copies of this oligonucleotide are identical, although several differing by 1 or 2 nucleotides have been detected in plasmid-cloned 5S DNA fragments. Regions A1 and A3 comprise a linear array of similar, but not identical, oligonucleotides; most repeating units contain very similar A1 and A3 sequences. Region B1 is a sequence of 49 nucleotides immediately adjacent to the 5′ terminus of the 5S rRNA sequence. It is GC-rich, much less repetitive than the remainder of the spacer and contains several palindromes, but no regions of dyad symmetry. This sequence is identical in all six of the single cloned repeating units of 5S DNA analyzed.  相似文献   

14.
Development of fibrin clot structure was examined at pH 7.0, Γ/2 0.15, and 29 °C as a function of thrombin and fibrinogen concentrations. Parameters for the release of Apeptides, to give ?A were evaluated. Characteristics of time dependencies of development of turbidity, 90 ° light scattering, network, and compactible network were established. Mean mass/length ratios of fibrin in developing and mature networks were determined. Relationships between results combined with an inferred dependence of lateral interaction on release of B-peptides are used to disclose a model in which a protofibril network is formed first and the intrinsic length of this network (i.e., length exclusive of overlap or loose ends) determines network length, thus mean mass/length ratio, at maturity. Statements regarding initial protofibril network are: (i) A dominant group of ?A-protofibrils appears first. With decreasing rate of production of ?A their average length increases and number decreases. (ii) Slower release of B-peptides produces ?AB whose fraction θAB=?AB(?A+?AB) determines the occurrence of protofibril regions capable of contributing to a lateral interaction sufficiently stable for the formation of network. (iii) When dominant protofibrils attain a minimum combination of average length, number concentration, and frequency of occurrence of capable regions, an initial protofibril network is rapidly generated. (iv) Capable regions near protofibril ends are preferentially involved in initial network formation. (v) The initial network mesh size is large compared to average concomitant free protofibril length. (vi) With B-peptide release dependent on prior A-peptide release, protofibrils in the initial network have the highest capable region frequency, and this is maintained as lateral interaction progresses. Then, fibrin which is free at initial network formation and fibrin which is produced subsequently interact mainly to increase the mean mass/length ratio of initial network elements.  相似文献   

15.
The changes in polymer-solvent interactions that occur when native calf thymus DNA is dialyzed against Na2SO4 solutions of a given ionic strength and buffer concentration but of varying concentrations in methylmercuric hydroxide have been investigated with the help of solution density measurements at 25 °C and pH 6.8–7.0. From measurements executed under equilibrium dialysis conditions at the three salt levels 5 mm, 0.05 m, and 0.5 m Na2SO4 (m refers to molality) and in the presence of 5 mm cacodylic acid buffer, the density increments (???c2)μ0 for native calf thymus DNA were determined as a function of CH3HgOH concentration. (???c2)μ0 was found not to vary with organomercurial concentration, irrespective of the concentration of supporting electrolyte, until a certain CH3HgOH concentration level has been reached, viz., pM1 ? 3.5 (pM1 = ?log mCH3HgOH), beyond which (???c2)μ0 increases strongly with increasing concentration of CH3HgOH. As is shown by optical melting, (???c2)μ0 becomes a function of organomercurial concentration the moment DNA undergoes denaturation brought about by the complexing of CH3HgOH with the various N-binding sites of the base residues in the DNA double helix.Polymer-solvent interactions, expressed in terms of preferential water interactions (“net hydration”) and preferential salt interactions (“salt solvation”), were derived from the (???c2)μ0 data in combination with data obtained on the preferential interaction of CH3HgOH with denatured DNA and data on the partial specific volumes of all major solution components, gathered from density measurements on solutions with fixed concentrations of diffusible components. Evidence is presented which shows that denaturation in general decreases the net hydration while salt becomes preferentially associated with the polyelectrolyte. This process is further amplified by the interaction of CH3HgOH with denatured DNA: Methylmercurated DNA alters the redistribution of diffusible components at dialysis equilibrium to such an extent that in a formal sense large amounts of water are rejected from the immediate vicinity of the polymer. The molecular implications of these findings are explored. The results are further discussed in the light of previous findings where the methylmercury-induced denaturation of DNA had been studied with the help of buoyant density measurements in a Cs2SO4 density gradient and by velocity-sedimentation in a variety of sulfate media.  相似文献   

16.
Conditions for the production of a complementary DNA sequence for use in studies of ribosomal RNA are described. E. coli DNA polymerase I is used to transcribe highly purified 28S ribosomal RNA from rat liver. The reaction is sensitive to the tertiary structure of the rRNA template-primer. The complementary DNA hybridizes to its rRNA template with a Rot12 of 0.02. The hybrid formed between 28S ribosomal RNA and complementary DNA has a Tm of 73°C. The probe reacts with total rat nuclear RNA with a Rot12 of 1.0.  相似文献   

17.
The interaction of chartreusin with covalently closed circular PM2 phage DNA was studied. The antibiotic caused a single strand scission in the presence of reducing agents, such as dithiothreitol, ascorbic acid or NaBH4. The degree of DNA breakage was dependent upon the drug concentration. The DNA-cleaving activity was enhanced by ferrous ion; but was completely blocked by catalase and partially by superoxide dismutase. The results suggest that reduction, chelate formation and auto-oxidation of the antibiotic, presumably the 5,12-dione moiety, produce free radicals, including O2? and ?OH, which are capable of inducing DNA strand scission.  相似文献   

18.
In an accompanying publication by Duckwitz-Peterlein, Eilenberger and Overath ((1977) Biochim. Biophys. Acta 469, 311–325) it is shown that the exchange of lipid molecules between negatively charged vesicles consisting of total phospholipid extracts from Escherichia coli occurs by the transfer of single lipid monomers or small micelles through the water. Here a kinetic interpretation is presented in terms of a rate constant, k?, for the escape of lipid molecules from the vesicle bilayer into the water. The evaluated rate constants are k?P = (0.86 ± 0.05) · 10?5s?1 and k?E = (1.09 ± 0.13) · 10?6s?1 for phospholipid molecules with trans-Δ9-hexadecenoate and trans-Δ9-octadecenoate, respectively, as the predominant acyl chain component. The rate constants are discussed in terms of the acyl chain and polar head group composition of the lipids.  相似文献   

19.
Proton magnetic resonance (pmr), ultraviolet absorption, induced circular dichroism (CD), and viscometric evidence is presented which show that reporter molecules 1 and 2 bind to DNA via an intercalation process. Preliminary kinetic studies show that the DNA·1 complex forms rapidly (i.e., <1 msec), whereas the DNA·2 complex forms at a considerably slower rate (t12 > 100 msec). The kinetic results, and the steric requirements for intercalation of 2 can be explained on the basis of a dynamic structure of DNA.  相似文献   

20.
Synthesis and phase transition characteristics of aqueous dispersions of the homologous (12 : 0, 14 : 0, 16 : 0) diphosphatidylglycerols (cardiolipins) and phosphatidyldiacylglycerols are reported. Electron microscopy of the negatively stained aqueous dispersions reveals a characteristic lamellar structure suggesting that these phospholipid molecules are organized as bilayers in the aqueous dispersions. The phase transition temperature (Tm) and the enthalpy of transition (ΔH) increase monotonically with chain length in the cardiolipin and phosphatidyldiacylglycerol series; Tm for phosphatidyldiacylglycerol is higher than that for cardiolipin of the same chain-length. The transition temperatures for the enantiomeric sn-3,3- and sn-1,1-phosphatidyldiacylglycerol and for the diastereomeric, meso-sn-1,3-phosphatidyldiacylglycerol are approximately the same. The molar enthalpy for the transition of cardiolipin-NH4+ bilayers is approximately twice the value for the phosphatidylcholines of the same chain length, i.e., the molar enthalpy per acyl chain is approximately the same in the two systems. The transition temperatures for metal ion salts of C1 6-cardiolipin exhibit a biphasic dependence upon the unhydrated ionic radii, i.e. the highest Tm is observed for Ca2+- cardiolipin and decreases for the salts of ions with smaller and larger ionic radii than that of Ca2+. The lowest Tm is observed for Rb+-cardiolipin. Monovalent metal salts of cardiolipin exhibit two phase transitions. This effect may result from different conformational packing of the four acyl chains due to differences in metal-phosphate binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号