首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Summary The localizations of specific and non-specific cholinesterases were demonstrated by light and electron microscopical methods in the secretory cells of the subcommissural organ of the guinea pig and albino rat.The activity of non-specific cholinesterase at light microscopical level appeared slightly stronger compared to the activity of the specific cholinesterase. No differences in the localizations of the both enzymes could be noticed.In electron microscopic specimens no differences could be observed between the localization or intensity of the specific and non-specific cholinesterase reactions except some nerve fibres round the secretory hypendymal cells in which only a specific cholinesterase reaction product was noticed. The reaction product was found mainly in the cytoplasmic and nuclear membranes, in the rough and smooth surfaced endoplasmic reticulum and around some secretory granules in the ependymal and hypendymal secretory cells of the subcommissural organ in guinea pig and albino rat.The possible role of cholinesterases in the secretory cells of the subcommissural organ is further discussed. Their participation in the metabolism and/or secretion of the hormonal end products is suggested.  相似文献   

2.
The subcommissural organ (SCO) of the golden hamster (Mesocricetus auratus) was studied by conventional electron microscopy, freeze-fracture technique, zinc-iodide-osmium (ZIO) and acid phosphatase cytochemical reactions. The ultrastructure of hamster SCO cells shows a few flattened cisternae of rough endoplasmic reticulum (ER) without dilated ones in the cytoplasm. The Golgi apparatus is very well developed. Freeze-fracture studies also indicate only short profiles of flattened ER in the cytoplasm endorsing the absence of dilated ER cisternae. After the treatment with ZIO mixture, reaction products were observed over flattened cisternae of the ER and the nuclear envelope. The Golgi apparatus was also reactive toward the ZIO mixture. Acid phosphatase activities are localized in the inner one or two saccules of the Golgi apparatus and dense bodies. From these results we suggest that (1) hamster SCO cells do not accumulate secretory material in the cytoplasm in the form of discrete secretory granules or dilated cisternae of ER, and (2) hamster SCO cells may possess extremely high secretory activity or may not be actively involved in secretory function at all as in rats or other rodents.  相似文献   

3.
The normal ventral and dorsal prostatic lobes of the young adult Syrian hamster were examined at the light and electron microscopic levels. Each lobe is composed of branched tubular secretory units separated from each other by loose interacinar connective tissue and draining into the urethra. The lumen of each acinus is lined by a simple epithelium composed of columnar secretory cells with occasional small basal cells. The epithelial layer, with the thin underlying lamina propria, forms a mucosa that is often highly folded. The whole acinus is bounded by a thick muscular stroma. In each of the ventral lobes, there are three main ducts, each one formed of tubular branched tributary secretory units. The walls of the secretory acini are moderately folded. Microvilli dominate the lumenal surface of the secretory epithelial cells. The Golgi complex is very extensive and shows dilated cisternae and secretory vesicles and vacuoles of various sizes. Membrane-bounded secretory granules populate the Golgi and apical areas and are released into the acinar lumen by exocytosis. The rough endoplasmic reticulum is dispersed throughout the cytoplasm, except in the region of the Golgi apparatus. In each of the dorsal lobes, there are several main tubular ducts that open into the urethra. Both proximal (ductal) and distal portions of the glandular tree are secretory in nature. Microvilli and cytoplasmic bulges and blebs dominate the lumenal surface of the secretory cells. The cells are also characterized by highly dilated cisternae of rough endoplasmic reticulum. The secretory cells show heterogeneity in the degree of dilation and distribution of rough endoplasmic reticulum, and this heterogeneity may reflect location in the glandular tree.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Summary In mice most of the ependymal cells of the subcommissural organ (SCO cells) are densely packed with dilated cisternae of the endoplasmic reticulum (ER) containing either finely granular or flocculent materials. The well developed supra-nuclear Golgi apparatus consists of stacks of flattened saccules and small vesicles; the two or three outer Golgi saccules are moderately dilated and exhibit numerous fenestrations; occasional profiles suggesting the budding of coated vesicles and formation of membrane-bound dense bodies from the ends of the innermost Golgi saccules are seen. A few coated vesicles and membrane-bound dense bodies of various sizes and shapes are also found in the Golgi region.The contents of the dilated ER cisternae are stained with periodic acid-silver methenamine techniques. In the Golgi complex the two or three inner saccules are stained as deeply as the dense bodies, and the outer saccules are only slightly stained. The stained contents of ER cisternae are more electron opaque than those of the outer but less opaque than those of the inner Golgi saccules and the dense bodies.Acid phosphatase activities are localized in the dense bodies, some of the coated vesicles in the Golgi region, and in the one or two inner Golgi saccules.On the basis of these results the following conclusions have been reached: (1) In mouse SCO cells the finely granular and the flocculent materials in the lumen of ER cisternae contain a complex carbohydrate(s) which is secreted into the ventricle to form Reissner's fiber; (2) the secretory substance is assumed to be synthesized by the ER and stored in its cisternae, and the Golgi apparatus might play only a minor role, if any, in the elaboration of the secretory material; (3) most of the dense bodies in the mouse SCO cells are lysosomal in nature instead of being so-called dark secretory granules.Sponsored by the National Science Council, Republic of China.  相似文献   

5.
Summary The ependymal cells of the toad subcommissural organ produce pale and dense secretory granules. Both types of granules are mainly concentrated in the apical cytoplasm and in the perinuclear region. Pale and dense granules are synthesized by and packed in the rough endoplasmic reticulum, bypassing the step of the Golgi apparatus. The apical cytoplasm of some subcommissural ependymal cells protrudes into the ventricle. All the cells project a few cilia and numerous slender, long microvilli into the ventricular lumen.Contacting the cilia and the microvilli there is a filamentous material identical to that observed in the fibre of Reissner at the aqueduct of Sylvius. In addition to filaments, the fibre of Reissner contains vacuolar formations. The fibre is surrounded by numerous ependymal cilia, some of which are embedded in the filamentous material of the fibre.The presence of numerous microvilli projected into the ventricle and the large number of vesicles scattered in the supranuclear cytoplasm seem to indicate that the subcommissural organ may have absorption functions. The fact that the intercellular space of the ependymal layer of the subcommissural organ is not separated from the ventricular lumen by tight junctions but by zonulae adhaerentes could indicate that the cerebrospinal fluid penetrates these intercellular spaces bathing all sides of the ependymal cells. The presence in the ependymal cells of vesicles opening into the intercellular space would be in agreement with the latter possibility.There are some ultrastructural differences between the ependymal cells of the cephalic end of the subcommissural organ and those of the caudal end. A critical analysis of Reissner's fibre formation is made.This investigation was partially supported by a Grant of the Wellcome Trust Foundation.Fellow of the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina. The author wishes to thank the valuable help of Mr. P. Heap.  相似文献   

6.
Summary Two different types of ependymal cells were found in the subcommissural organ (SCO) of Natrix maura. Most secretory cells showed morphological features resembling the general structure and ultrastructure of cells in the SCO of other vertebrates. This report describes a second population of cells lining a portion of the dorsal groove of the SCO. These cells were not selectively stained by chromalum-hematoxylin and, under the electron microscope, they were characterized by scarce surface differentiations, sparse apical cytoplasm and short basal processes. Flat, parallel cisternae of the rough endoplasmic reticulum produced vesicles that appeared to be transported to the well-developed Golgi apparatus. Dense secretory granules about 200 nm in diameter were found in the Golgi region. Similar granules were seen in the vicinity of the apical plasma membrane; some of them opened toward the ventricle. All these characteristics clearly differentiate this cell group from the other secretory cells lining the SCO laterally and ventrally.  相似文献   

7.
The monovalent ionophore monensin inhibits the secretion of both procollagen and fibronectin from human fibroblasts in culture. The distribution of these proteins in control and inhibited (5 x 10(-7) M monensin) cells has been studied by immunofluorescence microscopy. In control cells, both antigens are present throughout the cytoplasm and in specific deposits in a region adjacent to the nucleus, which we identify as a Golgi zone by electron microscopy. Treatment of cells with monensin causes intracellular accumulation of procollagen and fibronectin, initially in the juxta-nuclear region and also subsequently in peripheral regions. Electron microscope studies reveal that in such cells the juxta-nuclear Golgi zone becomes filled with a new population of smooth-membraned vacuoles and that normal Golgi complexes are not found. Immunocytochemically detected procollagen and fibronectin are localized in the region of these vacuoles, whereas more peripheral deposits correspond to the dilated cisternae of rough endoplasmic reticulum, which are also caused by monensin. Procollagen and fibronectin are often codistributed in these peripheral deposits. Accumulation of exportable proteins in Golgi-related vacuoles is consistent with previous analyses of the monensin effect. The subsequent development of dilated rough endoplasmic reticulum also containing accumulated proteins may indicate that there is an additional blockade at the exit from the endoplasmic reticulum, or that the synthesized proteins exceed the capacity of the Golgi compartment and that their accumulation extends into the endoplasmic reticulum.  相似文献   

8.
The ultrastructure of the parathyroid glands of adult Japanese lizards (Takydromus tachydromoides) in the spring and summer season was examined. The parenchyma of the gland consists of chief cells arranged in cords or solid masses. Many chief cells contain numerous free ribosomes and mitochondria, well-developed Golgi complexes, a few lysosome-like bodies, some multivesicular bodies and relatively numerous lipid droplets. The endoplasmic reticulum is mainly smooth-surfaced. Cisternae of the rough endoplasmic reticulum are distributed randomly in the cytoplasm. Small coated vesicles of 700-800 Å in diameter are found occasionally in the cytoplasm, especially in the Golgi region. The chief cells contain occasional secretory granules of 150-300 nm in diameter that are distributed randomly in the cytoplasm and lie close to the plasma membrane. Electron dense material similar to the contents of the secretory granules is observed in the enlarged intercellular space. These findings suggest that the secretory granules may be discharged into the intercellular space by an eruptocrine type of secretion. Coated vesicles (invaginations) connected to the plasma membrane and smooth vesicles arranged in a row near the plasma membrane are observed. It is suggested that such coated vesicles may take up extracellular proteins. The accumulation of microfilaments is sometimes recognized. Morphological evidence of synthetic and secretory activities in the chief cells suggests active parathyroid function in the Japanese lizard during the spring and summer season.  相似文献   

9.
Summary The pineal organ of the killifish, Fundulus heteroclitus, was investigated by electron microscopy under experimental conditions; its general and characteristic features are discussed with respect to the photosensory and secretory function. The strongly convoluted pineal epithelium is usually composed of photoreceptor, ganglion and supporting cells. In addition to the well-differentiated photosensory apparatus, the photoreceptor cell contains presumably immature dense-cored vesicles (140–220 nm in diameter) associated with a well-developed granular endoplasmic reticulum in the perinuclear region and the basal process. These dense-cored vesicles appear rather prominent in fish subjected to darkness. The ganglion cell shows the typical features of a nerve cell; granular endoplasmic reticulum, polysomes, mitochondria and Golgi apparatus are scattered in the electron-lucent cytoplasm around the spherical or oval nucleus. The dendrites of these cells divide into smaller branches and form many sensory synapses with the photoreceptor basal processes. Lipid droplets appear exclusively in the supporting cell, which also contains well-developed granular endoplasmic reticulum and Golgi apparatus. Cytoplasmic protrusions filled with compact dense-cored vesicles (90–220 nm in diameter) are found in dark-adapted fish. The origin of these cytoplasmic protrusions, however, remains unresolved. Thus, the pineal organ of the killifish contains two types of dense-cored vesicles which appear predominantly in darkness. The ultrastructural results suggest that the pineal organ of fish functions not only as a photoreceptor but also as a secretory organ.We thank Dr. Grace Pickford for the fishes.  相似文献   

10.
Electron microscope autoradiography was used to study cartilage from regenerating limbs of adult newts, Triturus, after intraperitoneal injections of proline-3H. The labeling in the endoplasmic reticulum, small vesicles, Golgi vacuoles, ground cytoplasm and extracellular matrix was compared during the secretion of radioactive products. The data appear to indicate that a large part of the radioactive secretion probably leaves the cell after having been in only one cellular compartment. Although this compartment may be the endoplasmic reticulum, a considerable amount of radioactivity fluxes through the ground cytoplasm and the possibility cannot be excluded that some secretory components leave the cell directly from the ground cytoplasm. The data appear incompatible with the hypothesis that all the radioactivity seen in the extracellular matrix arrived there via a single pathway involving first the endoplasmic reticulum and then the Golgi vacuoles. It is not, however, incompatible with a hypothesis that a fraction of the radioactive product uses this pathway.  相似文献   

11.
Summary In order to study the possible functional relationship between the adrenal gland and the subcommissural organ (SCO) in the lizard Lacerta s. sicula Raf., ACTH was administered to some specimens of this species in January when both the adrenal gland and the subcommissural organ have a very low activity. In comparison to untreated controls, the adrenals of animals treated with ACTH showed clear signs of stimulation, presenting enlarged blood vessels, very few lipid droplets, numerous polymorphic mitochondria and abundant tubular smooth endoplasmic reticulum. In addition, a distinct increase in secretory material was observed in the subcommissural cells of specimens treated with ACTH. These cells showed large cisternae of the rough endoplasmic reticulum filled with granular material in the basal region, numerous secretory granules of two types in the apical region and a reduced number of microvilli on the free cell surface. These findings, together with the results of preceding studies, lead the authors to the consideration that steroid hormones might play a role in the regulation of the secretory activity of the SCO.  相似文献   

12.
Summary The ventral prostatic secretory epithelial cells in older rats were studied by light and electron microscopy. The cells vary in height in different parts of the same organ, and ultrastructurally they show the presence of a developed secretory apparatus such as well-developed Golgi body and abundant rough endoplasmic reticulum. They also show signs of a depressed secretory activity, involving occasional emiocytosis of apical secretory vacuoles and a paucity of condensing vacuoles in the Golgi region and above it. Further, they are characterized by the frequent occurrence of supra and paranuclear pleomorphic lysosomes.  相似文献   

13.
Fine structure and stereo-images of the Golgi apparatus and endoplasmic reticulum (ER) in the subcommissural organ (SCO) cells were visualized by the application of zinc-iodide osmium tetroxide (ZIO) impregnation, conventional electron microscopy and high voltage electron microscopy (HVEM). The Golgi apparatus in the SCO cells of rats, gerbils and hamsters consisted of flattened saccules stacked in parallel array. It showed a selective staining toward ZIO mixture and might form a complex network of tubular structures because of the presence of numerous fenestrations in the flattened Golgi saccules. The cytoplasm of the SCO cells in the rat and gerbil was crowded by dilated cisternae of the ER with a few flattened profiles. In the hamster SCO cells, however, the dilated cisternae of the ER were not observed. Flattened cisternae of ER in all species studied showed a positivity for ZIO impregnation and formed a complex tubular network, whereas dilated cisternae of the ER in the rats and gerbils did not show any reactivity. It was thus determined that the observation of thin and thick sections selectively stained with appropriate reagent for defined cellular organelles under conventional electron microscopy and HVEM offered valuable information about three-dimensional organization of the cell. A definite species-specific variation of SCO ultrastructure and cytochemistry was also demonstrated.  相似文献   

14.
Ultrastructural changes of the parathyroid glands of isoproterenol-treated golden hamsters were investigated. Many chief cells in the parathyroid glands after 5 and 10 minutes of administration of isoproterenol contain well-developed Golgi complexes and granular endoplasmic reticulum, numerous prosecretory granules, and many secretory granules in the peripheral cytoplasm as compared with the control animals. Many chief cells in the parathyroid glands after 1, 3, 6 and 12 hours of administration have poorly-developed Golgi complexes, granular endoplasmic reticulum, many secretory granules and numerous lipid droplets as compared with the control animals. The morphology of the parathyroid gland after 30 minutes and 24 hours of administration resembles that of the control animals. It is considered that isoproterenol affects the secretory activity of the parathyroid gland.  相似文献   

15.
The first mandibular molars of the Swiss albino mice, 1 through 4 days of age, were fixed in glutaraldehyde or Karnovsky's fixative. The tissues were postfixed in OSO4, dehydrated and embedded in Epon. The prepolarizing, polarizing and secretory odontoblasts were described. The prepolarizing cells, located in the vicinity of the cervical loop, were mesenchymal-like in morphology. The cells of the polarizing stage possessed organelles indicative of protein synthesis. The nucleus was located proximally. Aperiodic fibers were evident in the wide basement membrane. The secretory odontoblasts were long, slender, polarized cells closely adjoining one another. Each odontoblast possessed six morphologically discernible regions: (1) an infranuclear region, limited in size and containing few cellular organelles; (2) a nuclear region, housing the oval nucleus and a few associated lamellae of rough endoplasmic reticulum as well as a limited number of mitochondria; (3) a supranuclear rough endoplasmic reticulum region, possessing an abundance of these organelles as well as some mitochondria and secretory vesicles; (4) a Golgi region, occupying the middle third of the cell, housing the elements of an extensive Golgi apparatus which was surrounded by peripherally located profiles of rough endoplasmic reticulum; additionally, this region contained smooth endoplasmic reticulum, mitochondria, numerous secretory granules and vesicles and occasional intracellular collagen fibers; (5) an apical rough endoplasmic reticulum region, containing a rough endoplasmic reticulum component that was less extensive than its supranuclear counterpart; in addition, this region was the one richest in mitochondria and contained a plethora of secretory vesicles and granules; (6) the odontoblastic process, a region mostly void of organelles, containing various secretory products, some of which appeared to be in the process of being released extracellularly into the surrounding dentin matrix.  相似文献   

16.
The ultrastructure of the parathyroid chief cell in the woodchuck, Marmota monax, was studied during the four seasons of the year. Spring chief cells have stacks of granular endoplasmic reticulum, prominent multiple Golgi zones and many clumped mitochondria. Summer cells resemble those seen in the spring but the mitochondria are associated with stacks of granular endoplasmic reticulum. Multiple areas of stacked granular endoplasmic reticulum characterize the fall chief cells. Their Golgi zones are large and are associated with many dense core secretory granules. Lipoid vacuoles are frequently noted. Winter chief cells have secretory granules and phagolysosomes (dense bodies). Some of these cells contain stacked arrays of granular endoplasmic reticulum associated with mitochondria, others have only short segments. The above morphological findings are discussed in relation to those in other hibernators, the parafollicular (C) cell, and to the cyclic seasonal activities of the woodchuck.  相似文献   

17.
Summary The secretory activity in the subcommissural organ (SCO) of the sheep and cow was examined by means of lectin histochemistry and cytochemistry. Among the various lectins tested, Concanavalin A (Con A) revealed glycoproteins rich in mannosyl residues in the rough endoplasmic reticulum of ependymal and hypendymal cells. One of these Con A-positive glycoproteins may represent the precursor of the specific secretory component elaborated in the SCO, giving rise to Reissner's fiber. Lens culinaris agglutinin (LCA) and Phaseolus vulgaris hemagglutinins (E-PHA and L-PHA), known to bind to oligosaccharides, as well as wheat-germ agglutinin (WGA) revealing neuraminic acid, labeled secretory granules located in the apical part of ependymal and hypendymal cells of ruminants, and also Reissner's fiber. Electron-microscopic visualization of WGA-positive material in the Golgi complex shows that complex-type glycoproteins are synthesized in the subcommissural organ of mammals. The electron-dense material is mainly secreted into the ventricular cavity and gives rise to Reissner's fiber. On the basis of lectin affinity for oligosaccharides, a structure of the complex-type oligosaccharide is proposed.  相似文献   

18.
This paper describes the ultrastructure of the seminal vesicle and the isoelectric focusing patterns of its secretion during sexual maturation and after allatectomy in Melanoplus sanguinipes (Fabr.) (Orthoptera : Acrididae). In epithelia from seminal vesicles of newly fledged males, the rough endoplasmic reticulum is well developed, and Golgi complexes are elaborate, which indicates the gland is metabolically active. The cells also contain large glycogen deposits and the lumen microvilli are well differentiated. These ultrastructural features are more dominant in 24-hr-old adults where the cytoplasm is clearly differentiated into basal and apical regions. Basally, the cytoplasm is dominated by rough endoplasmic reticulum, large Golgi complexes, glycogen deposits and numerous mitochondria, while the apical cytoplasm is filled with large secretory and/or lysosomal vesicles. Between days 3 and 7, the ultrastructural features change little other than the rough endoplasmic reticulum cisternae, which become vesicular. Analysis by isoelectric focusing shows that the amount of secretory protein increases with age until day 3, at which time the gland contains its full complement of secretion. In seminal vesicles from allatectomized insects, ultrastructural features of cells and isoelectric focusing patterns of the secretion arc identical to those from normal males.  相似文献   

19.
Excessive alcohol consumption causes metabolic changes and pathologic alterations in testes and accessory sex organ in different animal species. The aim of the present study was to evaluate the macroscopic, histologic and ultrastructural alterations provoked by chronic ingestion of different ethanol concentrations over increasing periods of time on the secretory epithelium of the seminal vesicle of C57/BL/6J mice in using stereological methods. Sixty male adult mice were divided into three experimental groups: Control, Alcoholic 25% and Alcoholic 35%, respectively, receiving tap water and tap water containing ethanol diluted to 25 and 35 degrees Gay Lussac. All mice were fed with the same solid diet. After 150 and 250 days of treatment the animals were sacrificed and the seminal vesicles were collected and processed for light and transmission electron microscopy. The cellular, cytoplasmic and nuclear volumes and the area density of autophagic and secretory vacuoles were measured. The histologic alterations observed in the alcoholic mice consisted of a reduction in epithelial size and cell volume, with maintenance of the same nuclear and cytoplasmic ratio as verified in the control groups. The ultrastructural alterations were: increased density of dense body area, decreased density of secretory granule area, and dilated rough endoplasmic reticulum and Golgi cisternae. We conclude that chronic ethanol ingestion causes depleting morphologic alterations in the epithelial cells of the seminal vesicle and negatively affects the secretory process of this gland.  相似文献   

20.
The effect of insulin (I), cortisol (F) and prolactin (P) on the ultrastructural morphology of epithelial cells of cultured mammary explants from virgin ovariectomized (OV-X) goats were studied. The epithelial cells showed little structural organization and were devoid of fat droplets and secretory protein granules at zero time of culture. The cytoplasm contained few profiles of smooth and rough endoplasmic reticulum and the Golgi apparatus was rudimentary. After being cultured in Waymouth's medium without added hormones the epithelial cells were indistinguishable from epithelial cells of uncultured explants. The addition of I induced changes mainly in the appearance of nucleoli. The nucleoli were enlarged and fibrillogranular areas with light spaces were observed. The most obvious cytological changes of epithelial cells of explants cultured in the presence of I and F are translocation of the nucleus into the basal cytoplasm, increase of rough endoplasmic reticulum, an increase in the size of the Golgi apparatus, presence of one or two lipid droplets and in some cells vacuoles with protein granules were present. Mitochondria were more abundant. The epithelial cells of explants cultured in the presence of I, F and P were characterized by the polarization of organelles within the cytoplasm and by the formation and release of protein granules and small and large fat droplets. The cell nucleus was in the basal cytoplasm, the Golgi apparatus was supranuclear. The rough endoplasmic reticulum was extensively developed and formed large sacs. Golgi vacuoles contained protein granules.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号