首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An in vitro comparison was made of the RNA polymerase activity associated with Newcastle disease virus (NDVo) and three clones of the temperature-sensitive mutant (NDVpi) isolated from persistently infected L cells. Less polymerase activity was associated with the NDVpi clones. Also, compared to NDVo, an increase in incubation temperature from 32 to 37 or 42 C resulted in a marked decrease in polymerase activity for the temperature-sensitive mutants which coincided with their inability to replicate at 42 C.  相似文献   

2.
The temperature-sensitive defects of virus mutants isolated from L cells persistently infected with Newcastle disease virus (NDV) were analyzed. Genetic grouping of the mutants by complementation tests was attempted by using several different methods, including yield analysis, RNA synthesis, and heterozygote formation at 42 to 43 C, the nonpermissive temperature. In each case, specific interference prevented detection of complementation. This interference was shown to occur prior to or at the level of virus RNA synthesis. Temperature-shift experiments with five different NDV(pi) clones showed that virus replication begun at 37 C could not be completed at the nonpermissive temperature. The activity of the NDV-specific RNA-dependent RNA polymerase in the cytoplasm of infected chicken embryo cells was not stable and could not be demonstrated directly. However, indirect measurement of RNA polymerase activity at the nonpermissive temperature was accomplished by studying the kinetics of virus-specific RNA synthesis in infected cells after temperature shift. Two types of response were obtained: with three NDV(pi) clones, virus-specific RNA synthesis ceased immediately upon transfer of infected cells to 42 to 43 C, whereas in cells infected with two other NDV(pi) clones, RNA synthesis continued for several hours at this temperature. These results suggested that there may be two types of ts defects in NDV(pi), both associated with virus-specific RNA polymerase activity.  相似文献   

3.
Virus mutants (NDV(pi)) isolated from L cells persistently infected with the Herts strain of Newcastle disease virus have been previously reported by this laboratory to differ from the wild-type virus (NDV(o)) in several physical and biological properties. It has now been determined that, in addition to these differences, the NDV(pi) mutants are also spontaneously selected temperature-sensitive mutants. The temperature sensitivity of 10 NDV(pi) clones was confirmed by temperature inhibition, plaquing efficiency, and single-cycle yield experiments. The cut-off temperature, at which more than 90% of virus replication is inhibited was between 41 and 42 C. All 10 NDV(pi) clones were also found to be defective in virus-specific ribonucleic acid (RNA) synthesis in infected chick embryo cells at 42 C and are tentatively classified as RNA(-). The possible relationships of the temperature sensitivity, the other NDV(pi) properties, and the maintenance of the persistently infected state are discussed.  相似文献   

4.
5.
Thermal Inactivation of Newcastle Disease Virus   总被引:2,自引:1,他引:1       下载免费PDF全文
The rate of destruction of hemagglutinins and infectivity of Newcastle disease virus was determined over a temperature range of 37.8 to 60 C. From the calculated values of deltaH and deltaS, it was concluded that inactivation of the hemagglutinating activity and viral infectivity was due to protein denaturation.  相似文献   

6.
A temperature-sensitive mutant (ts3) of Newcastle disease virus was physiologically characterized. All major viral structural proteins were synthesized at the permissive (37 degrees C) and nonpermissive (42 degrees C) temperatures, but the fusion (F) glycoprotein was not cleaved at 42 degrees C. In immunocytochemical electron microscopy, the F protein was abundant in the rough endoplasmic reticulum but not in cytoplasmic membrane at 42 degrees C. Noninfectious hemagglutinating virus particles containing all major structural proteins except the F protein were released at 42 degrees C from infected cells. We concluded that the defect in ts3 resides in the intracellular processing of the F protein.  相似文献   

7.
Virus mutants (NDV(pi)) recovered from L cells persistently infected with Newcastle disease virus (NDV, Herts strain) are temperature-sensitive (ts) at 43 C, although the wild-type virus (NDV(o)) which initiated the persistent infection replicates normally at that temperature. To study the relationship between the ts marker of NDV(pi) and the other properties which distinguish this virus from NDV(o), NDV(pi) ts(+) revertants were selected at the nonpermissive temperature and NDV(o) ts mutants were generated by treating NDV(o) with nitrous acid. Spontaneously-occurring ts mutants in the Herts NDV population were also isolated. The different virus populations were characterized with regard to plaque size, virulence for eggs, and thermal stability of infectivity, hemagglutinin, and neuraminidase. The NDV(pi) ts(+) revertants, although no longer temperature-sensitive, retained NDV(pi) properties, whereas both spontaneously-occurring and mutagen-induced ts mutants remained wild-type in their other properties. These findings showed that the properties which characterized NDV(pi) were independent of the ts marker. However, the ts marker and the other markers of NDV(pi) were coselected during the persistent infection, and the combination of those markers appeared to be important in the outcome of NDV infection of L cells. NDV(pi) replicated productively in L cells, whereas NDV(o), the NDV(pi) ts(+) revertants, and the spontaneously-occurring ts mutants all yielded covert infections in L cells. The role of the selection of ts mutants in persistent infection was confirmed as follows: L cells were persistently infected with NDV(pi) ts(+) revertants and NDV(o) ts mutants. Virus recovered from the persistently infected cultures after eight cell passages was always temperature-sensitive and of smaller plaque size than the parental virus in chicken embryo cell cultures. Similar results were obtained with virus recovered from L-cell cultures persistently infected with two other velogenic strains of NDV, the Texas-GB and Kansas-Man strains. These results strongly suggest that selection of ts mutants during the persistent infection was not random and played a role in establishment or maintenance of the persistent infection, or both.  相似文献   

8.
Newcastle disease virus (NDV), an avian paramyxovirus, is inherently tumor selective and is currently being considered as a clinical oncolytic virus and vaccine vector. In this study, we analyzed the effect of complement on the neutralization of NDV purified from embryonated chicken eggs, a common source for virus production. Fresh normal human serum (NHS) neutralized NDV by multiple pathways of complement activation, independent of neutralizing antibodies. Neutralization was associated with C3 deposition and the activation of C2, C3, C4, and C5 components. Interestingly, NDV grown in mammalian cell lines was resistant to complement neutralization by NHS. To confirm whether the incorporation of regulators of complement activity (RCA) into the viral envelope afforded complement resistance, we grew NDV in CHO cells stably transfected with CD46 or HeLa cells, which strongly express CD46 and CD55. NDV grown in RCA-expressing cells was resistant to complement by incorporating CD46 and CD55 on virions. Mammalian CD46 and CD55 molecules on virions exhibited homologous restriction, since chicken sera devoid of neutralizing antibodies to NDV were able to effectively neutralize these virions. The incorporation of chicken RCA into NDV produced in embryonated eggs similarly provided species specificity toward chicken sera.  相似文献   

9.
Gene 5 of bacteriophage T7 encodes a DNA polymerase essential for phage replication. A single point mutation in gene 5 confers temperature sensitivity for phage growth. The mutation results in an alanine to valine substitution at residue 73 in the exonuclease domain. Upon infection of Escherichia coli by the temperature-sensitive phage at 42 degrees C, there is no detectable T7 DNA synthesis in vivo. DNA polymerase activity in these phage-infected cell extracts is undetectable at assay temperatures of 30 degrees C or 42 degrees C. Upon infection at 30 degrees C, both DNA synthesis in vivo and DNA polymerase activity in cell extracts assayed at 30 degrees C or 42 degrees C approach levels observed using wild-type T7 phage. The amount of soluble gene 5 protein produced at 42 degrees C is comparable to that produced at 30 degrees C, indicating that the temperature-sensitive phenotype is not due to reduced expression, stability, or solubility. Thus the polymerase induced at elevated temperatures by the temperature-sensitive phage is functionally inactive. Consistent with this observation, biochemical properties and heat inactivation profiles of the genetically altered enzyme over-produced at 30 degrees C closely resemble that of wild-type T7 DNA polymerase. It is likely that the polymerase produced at elevated temperatures is a misfolded intermediate in its folding pathway.  相似文献   

10.
The temperature dependence of the virion-associated polymerase activity of six temperature-sensitive (ts) mutants of vesicular stomatitis virus (tsW10, 11, 14, 16B, 28, and 29) has been examined in vitro and compared to the heat-resistant parent (HR). The polymerase of five of the mutants (tsW10, 11, 14, 16B, and 28) appears to be significantly more ts than that of HR. Because certain pairs of these five mutants can complement each other's in vitro polymerase activity, it appears that in vitro some components involved in the polymerase of one virion can be utilized by another virion. Examination of 19 revertants of tsW11 and tsW16B which had regained their ability to replicate at 38 C showed that their in vitro polymerase activity had also become less ts. Furthermore, it was found that the pairs of mutants which showed in vitro complementation of polymerase activity at 38 C were those which had shown complementation in yielding infectious progeny in mixedly infected cells. These two observations suggest that the ts behavior of the in vitro polymerase activity of the five mutants is related to their inability to replicate at the nonpermissive temperature.  相似文献   

11.
The production of mengovirus in Novikoff rat hepatoma cells is progressively reduced with an increase in incubation temperature of the cells from 34 to 40 C, in spite of the fact that about the same amounts of single-stranded and double-stranded viral ribonucleic acid (RNA) are synthesized at 34, 37, and 40 C; the rate of overall protein synthesis is as high at 40 C as at 37 C. At 40 C, progeny viral RNA accumulates in an undegraded form without being incorporated into virus particles. The results suggest that virus maturation is preferentially inhibited at supraoptimal temperatures. At 42 C, on the other hand, no viral RNA is produced and no viral RNA polymerase activity is detectable in cell lysates. Failure of infected cells to form viral RNA polymerase at 42 C is probably due to an impairment of protein synthesis since most of the polyribosomes are rapidly lost during incubation at 42 C and the rate of amino acid incorporation into protein is 70% lower at 42 C than at 37 C. When infected cells are shifted from 37 to 42 C during the period of active viral RNA synthesis, viral RNA polymerase activity is rapidly lost from the cells, and viral RNA synthesis ceases within 45 min. In contrast, the RNA polymerase is as active in vitro at 42 C as at 37 C, and the activity is relatively stable at 42 C.  相似文献   

12.
Of 625 aphidicolin-resistant clones selected at 33.5°C from mutagenized mouse FM3A cells, 13 clones could not grow at 39.5°C. Five of these clones, chosen at random, resumed growth at 39.5°C when thymidine was added to the culture medium. In hybrids, conditional thymidine auxotrophy was a recessive trait, but aphidicolin-resistance was either a codominant or recessive one depending on the mutant clone used.Thymidylate synthetase activity in crude extracts of these mutants was completely inactivated by preincubation for 30 min at 42°C, whereas that of the parent cells was not affected by the same treatment. Thus, the temperature-sensitive growth of the mutants described here seems to be due to this heat-sensitive thymidylate synthetase.  相似文献   

13.
14.
Polyadenylate [poly(A)] sequences are associated with the 35 and 50S Newcastle disease virus (NDV)-specific RNAs as well as all six to seven of the 18-22S NDV-specific messenger RNAs extracted from infected chicken embryo cells. The poly(A) associated with the 18-22S RNA has an average size of 120 to 130 nucleotides. The 18-22S RNA synthesized in vitro by NDV's virion-bound polymerase contains six to seven species of the same size and relative proportions as its intracellular counterpart. This in vitro synthesized 18-22S RNA also contains covalently linked poly(A) sequences which, although variable in size, are usually larger and more heterogeneous than those from the infected cell. In vitro RNA synthesis is supported not only by magnesium (at an optimal concentration of mM) but by manganese (at an optimal concentration of 0.5 to 1.0 mM) as well. However, the major product made in the presence of manganese, although sedimenting at 18 to 22S, differs somewhat from the product made in the presence of magnesium.  相似文献   

15.
Newcastle Disease Virus Infection of L Cells   总被引:3,自引:1,他引:2       下载免费PDF全文
Newcastle disease virus (NDV) California strain reportedly grows poorly in L cells but replicates very well in chicken embryo cells. NDV-infected L cell cultures show a characteristic virus growth curve with respect to uridine incorporation, but plaque assays of the virus produced 24 h postinfection (PI) show no infectious particles when assayed on L cell monolayers and only a very low titer on chick cell monolayers. Plasma membranes isolated and purified from infected L cells 8 h PI contain all of the major virion proteins. In addition, NDV-infected L cells show a 50% loss of H-2 antigenic activity, a phenomenon previously observed in cells productively infected with vesicular stomatitis virus. These results suggest that at least part of the normal process of NDV maturation occurs in NDV-infected L cells. Sodium dodecyl sulfate-polyacrylamide gel patterns of supernatant virus purified from cells radiolabeled with amino acids from 3 to 24 h PI in the presence of actinomycin D show that all the major NDV structural proteins are present. Electron micrographs of NDV-infected L cells show extensive virus maturation at cell membranes. It can be concluded that infection of L cells with NDV results in a normal production of virus-specific RNA, synthesis of all the major structural proteins, association of the viral envelope proteins with the L cell plasma membrane, and the loss of cell surface H-2 antigenic activity. However, most of the virus particles produced are noninfectious.  相似文献   

16.
17.
Ability of 14 Newcastle disease virus strains to produce large plaques was related to virulence for chickens. Plaque-size comparisons were made under standard conditions in chick embryo cell monolayers. All plaque-producing strains showed a range of plaque sizes modified to a degree by the overlay medium used. An increase in size was found for most strains under methyl-cellulose overlay medium. Markedly larger plaques were found under this medium for both Calif-RO and Calif-CG strains. Heterogeneity in plaque size was most pronounced in velogenic (high virulence) strains. Only populations of small plaques were found in mesogenic (intermediate virulence) strains, and plaques were rarely found in lentogenic (low virulence) strains. Statistical analysis showed that the plaque size of velogenic strains differed significantly from mesogenic strains. None of the 11 plaque-producing strains had a normal distribution of plaque sizes, owing primarily to the presence of different genotypes within the plaquing population of a strain. This was demonstrated by derivation of clones from two of the strains. The populations of the large (Herts L) and small (Herts S) clear plaque clones derived from Eng-Herts were homogenous and distinct from one another on the basis of plaque size. Herts L was more virulent than Herts S. Although Herts L became more heterogenous in respect to plaque size upon repeated passage in embryonated eggs, no decrease in virulence of the strain was observed.  相似文献   

18.
19.
Lipid rafts are membrane microdomains enriched in cholesterol, sphingolipids, and glycolipids that have been implicated in many biological processes. Since cholesterol is known to play a key role in the entry of some other viruses, we investigated the role of cholesterol and lipid rafts in the host cell plasma membrane in Newcastle Disease Virus (NDV) entry. We used methyl-β-cyclodextrin (MβCD) to deplete cellular cholesterol and disrupt lipid rafts. Our results show that the removal of cellular cholesterol partially reduces viral binding, fusion and infectivity. MβCD had no effect on the expression of sialic acid containing molecule expression, the NDV receptors in the target cell. All the above-described effects were reversed by restoring cholesterol levels in the target cell membrane. The HN viral attachment protein partially localized to detergent-resistant membrane microdomains (DRMs) at 4°C and then shifted to detergent-soluble fractions at 37°C. These results indicate that cellular cholesterol may be required for optimal cell entry in NDV infection cycle.  相似文献   

20.
Newcastle disease virus was irradiated at temperatures ranging from 2.2 to 60 C. An interaction between the thermal and ionizing energy was observed in the temperature region of 49 to 60 C. At 2.2 C, the hemagglutinin was considerably more radioresistant than the infectivity property. It is believed that radiation inactivation of Newcastle disease virus infectivity at low temperatures was due to nucleic acid degradation and at higher temperatures was due to protein denaturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号