首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radcliffe PA  Garcia MA  Toda T 《Genetics》2000,156(1):93-103
The biogenesis of microtubules in the cell comprises a series of complex steps, including protein-folding reactions catalyzed by chaperonins. In addition a group of evolutionarily conserved proteins, called cofactors (A to E), is required for the production of assembly-competent alpha-/beta-tubulin heterodimers. Using fission yeast, in which alp11(+), alp1(+), and alp21(+), encoding the homologs for cofactors B, D, and E, respectively, are essential for cell viability, we have undertaken the genetic analysis of alp31(+), the homolog of cofactor A. Gene disruption analysis shows that, unlike the three genes mentioned above, alp31(+) is dispensable for cell growth and division. Nonetheless, detailed analysis of alp31-deleted cells demonstrates that Alp31(A) is required for the maintenance of microtubule structures and, consequently, the proper control of growth polarity. alp31-deleted cells show genetic interactions with mutations in beta-tubulin, but not in alpha-tubulin. Budding yeast cofactor A homolog RBL2 is capable of suppressing the polarity defects of alp31-deleted cells. We conclude that the cofactor-dependent biogenesis of microtubules comprises an essential and a nonessential pathway, both of which are required for microtubule integrity.  相似文献   

2.
The proper folding of tubulins and their incorporation into microtubules consist of a series of reactions, in which evolutionarily conserved proteins, cofactors A to E, play a vital role. We have cloned a fission yeast gene (alp41(+)) which encodes a highly conserved small GTP-binding protein homologous to budding yeast CIN4 and human ARF-like Arl2. alp41(+) is essential, disruption of which results in microtubule dysfunction and growth polarity defects. Genetic analysis indicates that Alp41 plays a crucial role in the cofactor-dependent pathway, in which it functions upstream of the cofactor D homologue Alp1(D) and possibly in concert with Alp21(E).  相似文献   

3.
We describe the isolation of fission yeast homologues of tubulin-folding cofactors B (Alp11) and E (Alp21), which are essential for cell viability and the maintenance of microtubules. Alp11B contains the glycine-rich motif (the CLIP-170 domain) involved in microtubular functions, whereas, unlike mammalian cofactor E, Alp21E does not. Both mammalian and yeast cofactor E, however, do contain leucine-rich repeats. Immunoprecipitation analysis shows that Alp11B interacts with both α-tubulin and Alp21E, but not with the cofactor D homologue Alp1, whereas Alp21E also interacts with Alp1D. The cellular amount of α-tubulin is decreased in both alp1 and alp11 mutants. Overproduction of Alp11B results in cell lethality and the disappearance of microtubules, which is rescued by co-overproduction of α-tubulin. Both full-length Alp11B and the C-terminal third containing the CLIP-170 domain localize in the cytoplasm, and this domain is required for efficient binding to α-tubulin. Deletion of alp11 is suppressed by multicopy plasmids containing either alp21+ or alp1+, whereas alp21 deletion is rescued by overexpression of alp1+ but not alp11+. Finally, the alp1 mutant is not complemented by either alp11+ or alp21+. The results suggest that cofactors operate in a linear pathway (Alp11B-Alp21E-Alp1D), each with distinct roles.  相似文献   

4.
The ADP ribosylation factor-like proteins (Arls) are a family of small monomeric G proteins of unknown function. Here, we show that Arl2 interacts with the tubulin-specific chaperone protein known as cofactor D. Cofactors C, D, and E assemble the alpha/beta- tubulin heterodimer and also interact with native tubulin, stimulating it to hydrolyze GTP and thus acting together as a beta-tubulin GTPase activating protein (GAP). We find that Arl2 downregulates the tubulin GAP activity of C, D, and E, and inhibits the binding of D to native tubulin in vitro. We also find that overexpression of cofactors D or E in cultured cells results in the destruction of the tubulin heterodimer and of microtubules. Arl2 specifically prevents destruction of tubulin and microtubules by cofactor D, but not by cofactor E. We generated mutant forms of Arl2 based on the known properties of classical Ras-family mutations. Experiments using these altered forms of Arl2 in vitro and in vivo demonstrate that it is GDP-bound Arl2 that interacts with cofactor D, thereby averting tubulin and microtubule destruction. These data establish a role for Arl2 in modulating the interaction of tubulin-folding cofactors with native tubulin in vivo.  相似文献   

5.
The proper folding of tubulins prior to their incorporation into microtubules requires a group of conserved proteins called cofactors A to E. In fission yeast, homologues of these cofactors (at least B, D and E) are necessary for the biogenesis of microtubules and for cell viability. Here we show that the temperature-sensitive alp11-924 mutant, which is defective in the cofactor B homologue, contains an opal nonsense mutation, which results in the production of a truncated Alp11B protein (Alp111–118). We isolated a tRNATrp gene as a multicopy suppressor of this mutation, which rescues alp11-924 by read-through of the nonsense codon. The truncated Alp111–118 protein lacks the C-terminal half of Alp11B, consisting of a central coiled-coil region and the distal CLIP-170 domain found in a number of proteins involved in microtubule functions. Both of these domains are required for the maintenance of microtubule architecture in vivo. Detailed functional analyses lead us to propose that Alp11B comprises three functional domains: the N-terminal half executes the essential function, the central coiled-coil region is necessary for satisfactory maintenance of cellular α-tubulin levels, and the C-terminal CLIP-170 domain is required for efficient binding to α-tubulin. Received: 29 November 1999 / Accepted: 18 April 2000  相似文献   

6.
Supplying the appropriate amount of correctly folded α/β-tubulin heterodimers is critical for microtubule dynamics. Formation of assembly-competent heterodimers is remarkably elaborate at the molecular level, in which the α- and β-tubulins are separately processed in a chaperone-dependent manner. This sequential step is performed by the tubulin-folding cofactor pathway, comprising a specific set of regulatory proteins: cofactors A–E. We identified the fission yeast cofactor: the orthologue of cofactor C, Tbc1. In addition to its roles in tubulin folding, Tbc1 acts as a GAP in regulating Alp41/Arl2, a highly conserved small GTPase. Of interest, the expression of GDP- or GTP-bound Alp41 showed the identical microtubule loss phenotype, suggesting that continuous cycling between these forms is important for its functions. In addition, we found that Alp41 interacts with Alp1D, the orthologue of cofactor D, specifically when in the GDP-bound form. Intriguingly, Alp1D colocalizes with microtubules when in excess, eventually leading to depolymerization, which is sequestered by co-overproducing GDP-bound Alp41. We present a model of the final stages of the tubulin cofactor pathway that includes a dual role for both Tbc1 and Alp1D in opposing regulation of the microtubule.  相似文献   

7.
Tubulin folding cofactors B (TBCB) and E (TBCE) are alpha-tubulin binding proteins that, together with Arl2 and cofactors D (TBCD), A (TBCA or p14) and C (TBCC), participate in tubulin biogenesis. TBCD and TBCE have also been implicated in microtubule dynamics through regulation of tubulin heterodimer dissociation. Understanding the in vivo function of these proteins will shed light on the Kenny-Caffey/Sanjad-Sakati syndrome, an important human disorder associated with TBCE. Here we show that, when overexpressed, TBCB depolymerizes microtubules. We found that this function is based on the ability of TBCB to form a binary complex with TBCE that greatly enhances the efficiency of this cofactor to dissociate tubulin in vivo and in vitro. We also show that TBCE, TBCB and alpha-tubulin form a ternary complex after heterodimer dissociation, whereas the free beta-tubulin subunit is recovered by TBCA. These complexes might serve to escort alpha-tubulin towards degradation or recycling, depending on the cell requirements.  相似文献   

8.
Microtubules are polymers of alpha/beta-tubulin participating in essential cell functions. A multistep process involving distinct molecular chaperones and cofactors produces new tubulin heterodimers competent to polymerise. In vitro cofactor A (TBCA) interacts with beta-tubulin in a quasi-native state behaving as a molecular chaperone. We have used siRNA to silence TBCA expression in HeLa and MCF-7 mammalian cell lines. TBCA is essential for cell viability and its knockdown produces a decrease in the amount of soluble tubulin, modifications in microtubules and G1 cell cycle arrest. In MCF-7 cells, cell death was preceded by a change in cell shape resembling differentiation.  相似文献   

9.
Vardy L  Toda T 《The EMBO journal》2000,19(22):6098-6111
Microtubule polymerization is initiated from the microtubule organizing centre (MTOC), which contains the gamma-tubulin complex. We have identified fission yeast Alp4 and Alp6, which are homologues of the gamma-tubulin-interacting proteins Sc.Spc97/Hs.Gcp2 and Sc. Spc98/Hs.Gcp3, respectively. The size of the fission yeast gamma-tubulin complex is large (>2000 kDa), comparable to that in metazoans. Both Alp4 and Alp6 localize to the spindle pole body (SPB) and also to the equatorial MTOC. Temperature-sensitive (ts) alp4 and alp6 mutants show two types of microtubular defects. First, monopolar mitotic spindles form. Secondly, abnormally long cytoplasmic microtubules appear that do not stop at the cell tips and are still associated with the SPB. Alp4 function is required in G(1) phase and ts mutants become lethal before S-phase. alp4 and alp6 mutants are hypersensitive to the microtubule- destabilizing drug thiabendazole (TBZ) and show a lethal 'cut' phenotype in its presence. Furthermore, alp4mad2 double mutants show an exaggerated multiple septation phenotype in TBZ. These results indicate that Alp4 and Alp6 may play a crucial role in the spindle pole-mediated checkpoint pathway.  相似文献   

10.
Microtubules are highly dynamic structures, composed of alpha/beta-tubulin heterodimers. Biosynthesis of the functional dimer involves the participation of several chaperones, termed cofactors A-E, that act on folding intermediates downstream of the cytosolic chaperonin CCT (1, 2). We show that cofactor D is also a centrosomal protein and that overexpression of either the full-length protein or either of two centrosome localization domains leads to the loss of anchoring of the gamma-tubulin ring complex and of nucleation of microtubule growth at centrosomes. In contrast, depletion of cofactor D by short interfering RNA results in mitotic spindle defects. Because none of these changes in cofactor D activity produced a change in the levels of alpha-or beta-tubulin, we conclude that these newly discovered functions for cofactor D are distinct from its previously described role in tubulin folding. Thus, we describe a new role for cofactor D at centrosomes that is important to its function in polymerization of tubulin and organization of the mitotic spindle.  相似文献   

11.
gamma-Tubulin functions as a multiprotein complex, called the gamma-tubulin complex (gamma-TuC), and composes the microtubule organizing center (MTOC). Fission yeast Alp4 and Alp6 are homologues of two conserved gamma-TuC proteins, hGCP2 and hGCP3, respectively. We isolated a novel gene, alp16(+), as a multicopy suppressor of temperature-sensitive alp6-719 mutants. alp16(+) encodes a 759-amino-acid protein with two conserved regions found in all other members of gamma-TuC components. In addition, Alp16 contains an additional motif, which shows homology to hGCP6/Xgrip210. Gene disruption shows that alp16(+) is not essential for cell viability. However, alp16 deletion displays abnormally long cytoplasmic microtubules, which curve around the cell tip. Furthermore, alp16-deleted mutants are hypersensitive to microtubule-depolymerizing drugs and synthetically lethal with either temperature-sensitive alp4-225, alp4-1891, or alp6-719 mutants. Overproduction of Alp16 is lethal, with defective phenotypes very similar to loss of Alp4 or Alp6. Alp16 localizes to the spindle pole body throughout the cell cycle and to the equatorial MTOC at postanaphase. Alp16 coimmunoprecipitates with gamma-tubulin and cosediments with the gamma-TuC in a large complex (>20 S). Alp16 is, however, not required for the formation of this large complex. We discuss evolutional conservation and divergence of structure and function of the gamma-TuC between yeast and higher eukaryotes.  相似文献   

12.
13.
Garcia MA  Koonrugsa N  Toda T 《The EMBO journal》2002,21(22):6015-6024
Fission yeast Klp5 and Klp6 belong to the microtubule-destabilizing Kin I family. In klp5 mutants, spindle checkpoint proteins Mad2 and Bub1 are recruited to mitotic kinetochores for a prolonged duration, indicating that these kinetochores are unattached. Further analysis shows that there are kinetochores to which only Bub1, but not Mad2, localizes. These kinetochores are likely to have been captured, yet lack tension. Thus Klp5 and Klp6 play a role in a spindle- kinetochore interaction at dual steps, capture and generation of tension. The TOG/XMAP215 family, Alp14 and Dis1 are known to stabilize microtubules and be required for the bivalent attachment of the kinetochore to the spindle. Despite apparent opposing activities towards microtubule stability, Klp5/Klp6 and Alp14/Dis1 share an essential function, as either dis1klp or alp14klp mutants are synthetically lethal, like alp14dis1. Defective phenotypes are similar to each other, characteristic of attachment defects and chromosome mis-segregation. Furthermore Alp14 is of significance for kinetochore localization of Klp5. We propose that Klp5/Klp6 and Alp14/Dis1 play a collaborative role in bipolar spindle formation during prometaphase through producing spindle dynamism.  相似文献   

14.
The TOG/XMAP215-related proteins play a role in microtubule dynamics at its plus end. Fission yeast Alp14, a newly identified TOG/XMAP215 family protein, is essential for proper chromosome segregation in concert with a second homologue Dis1. We show that the alp14 mutant fails to progress towards normal bipolar spindle formation. Intriguingly, Alp14 itself is a component of the Mad2-dependent spindle checkpoint cascade, as upon addition of microtubule-destabilizing drugs the alp14 mutant is incapable of maintaining high H1 kinase activity, which results in securin destruction and premature chromosome separation. Live imaging of Alp14-green fluorescent protein shows that during mitosis, Alp14 is associated with the peripheral region of the kinetochores as well as with the spindle poles. This is supported by ChIP (chromatin immunoprecipitation) and overlapping localization with the kinetochore marker Mis6. An intact spindle is required for Alp14 localization to the kinetochore periphery, but not to the poles. These results indicate that the TOG/XMAP215 family may play a central role as a bridge between the kinetochores and the plus end of pole to chromosome microtubules.  相似文献   

15.
We recently described the isolation of a mutant Chinese hamster ovary cell (Cmd 4) resistant to the cytotoxic effects of colcemid (Cabral et al., Cell 20:29-36, 1980). This mutant carries an altered beta-tubulin but still grows normally at 37 degrees C. In the present study we found that Cmd 4 is temperature sensitive for growth at 40.3 degrees C. A class of revertants selected for temperature resistance had simultaneously lost colcemid resistance and the altered beta-tubulin. In addition, we isolated a temperature-resistant revertant which carries a further alteration in the mutant beta-tubulin polypeptide. This second alteration appears to make the mutant beta-tubulin incompetent to assemble into microtubules, resulting in a strain which is again colcemid sensitive. These revertant cell lines provide strong evidence that a mutation in beta-tubulin can confer both colcemid resistance and temperature sensitivity on a mammalian cell line. Cellular microtubules studied by indirect immunofluorescence in both mutant and revertant cell lines had an apparently normal distribution at permissive and nonpermissive temperatures, yet mitosis appears to be abnormal in the mutant cell line. We conclude from these studies that incorporation of the altered beta-tubulin into microtubules does not affect their distribution but may affect their function during mitosis.  相似文献   

16.
Revertants of a colcemid-resistant Chinese hamster ovary cell line with an altered (D45Y) beta-tubulin have allowed the identification of four cis-acting mutations (L187R, Y398C, a 12-amino acid in-frame deletion, and a C-terminal truncation) that act by destabilizing the mutant tubulin and preventing it from incorporating into microtubules. These unstable beta-tubulins fail to form heterodimers and are predominantly found in association with the chaperonin CCT, suggesting that they cannot undergo productive folding. In agreement with these in vivo observations, we show that the defective beta-tubulins do not stably interact with cofactors involved in the tubulin folding pathway and, hence, fail to exchange with beta-tubulin in purified alphabeta heterodimers. Treatment of cells with MG132 causes an accumulation of the aberrant tubulins, indicating that improperly folded beta-tubulin is degraded by the proteasome. Rapid degradation of the mutant tubulin does not elicit compensatory changes in wild-type tubulin synthesis or assembly. Instead, loss of beta-tubulin from the mutant allele causes a 30-40% decrease in cellular tubulin content with no obvious effect on cell growth or survival.  相似文献   

17.
The mutant BEN210 of Physarum polycephalum is highly resistant to a number of benzimidazole carbamate agents, including methylbenzimidazole-2-yl-carbamate and parbendazole. The resistance is conferred by the benD210 mutation in a structural gene for beta-tubulin. This mutant allele encodes a beta-tubulin with novel electrophoretic mobility. We have used this strain to determine whether the mutant beta-tubulin is used in microtubules and whether this usage permits microtubule polymerisation in the presence of drugs both in vivo and in vitro. In vitro assembly studies of tubulin purified from the mutant strain have shown that microtubules are formed both in the absence of drugs and in all drug concentrations tested (up to 50 microM parbendazole). In contrast, the assembly of microtubules from wild-type tubulin in vitro is totally inhibited by 2-5 microM parbendazole. Thus the resistance of BEN210 to parbendazole observed in vivo has been reproduced in vitro using tubulin purified from the mutant strain. Electrophoretic analysis of the microtubules formed in vitro has shown that both the wild-type and the mutant beta-tubulin are incorporated into the microtubules and that the proportion of mutant to wild-type beta-tubulin appears to remain constant with increasing drug concentration. This is the first demonstration of a single mutation in a tubulin structural gene causing an altered function of the gene product in vitro.  相似文献   

18.
XMAP215/Dis1 proteins are conserved tubulin-binding TOG-domain proteins that regulate microtubule (MT) plus-end dynamics. Here we show that Alp14, a XMAP215 orthologue in fission yeast, Schizosaccharomyces pombe, has properties of a MT polymerase. In vivo, Alp14 localizes to growing MT plus ends in a manner independent of Mal3 (EB1). alp14-null mutants display short interphase MTs with twofold slower assembly rate and frequent pauses. Alp14 is a homodimer that binds a single tubulin dimer. In vitro, purified Alp14 molecules track growing MT plus ends and accelerate MT assembly threefold. TOG-domain mutants demonstrate that tubulin binding is critical for function and plus end localization. Overexpression of Alp14 or only its TOG domains causes complete MT loss in vivo, and high Alp14 concentration inhibits MT assembly in vitro. These inhibitory effects may arise from Alp14 sequestration of tubulin and effects on the MT. Our studies suggest that Alp14 regulates the polymerization state of tubulin by cycling between a tubulin dimer-bound cytoplasmic state and a MT polymerase state that promotes rapid MT assembly.  相似文献   

19.
The Dis1/TOG family plays a pivotal role in microtubule organization. In fission yeast, Alp14 and Dis1 share an essential function in bipolar spindle formation. Here, we characterize Alp7, a novel coiled-coil protein that is required for organization of bipolar spindles. Both Alp7 and Alp14 colocalize to the spindle pole body (SPB) and mitotic spindles. Alp14 localization to these sites is fully dependent upon Alp7. Conversely, in the absence of Alp14, Alp7 localizes to the SPBs, but not mitotic spindles. Alp7 forms a complex with Alp14, where the C-terminal region of Alp14 interacts with the coiled-coil domain of Alp7. Intriguingly, this Alp14 C terminus is necessary and sufficient for mitotic spindle localization. Overproduction of either full-length or coiled-coil region of Alp7 results in abnormal V-shaped spindles and stabilization of interphase microtubules, which is induced independent of Alp14. Alp7 may be a functional homologue of animal TACC. Our results shed light on an interdependent relationship between Alp14/TOG and Alp7. We propose a two-step model that accounts for the recruitment of Alp7 and Alp14 to the SPB and microtubules.  相似文献   

20.
p21-activated kinase 1 (Pak1) induces cytoskeleton reorganization in part by regulating microtubule dynamics through an elusive mechanism. Using a yeast two-hybrid screen, we identified tubulin cofactor B (TCoB) (a cofactor in the assembly of the alpha/beta-tubulin heterodimers) as an interacting substrate of Pak1. Pak1 directly phosphorylated TCoB in vitro and in vivo on serines 65 and 128 and colocalized with TCoB on newly polymerized microtubules and on centrosomes. TCoB interacted with the GTPase-binding domain of Pak1 and activated Pak1 in vitro and in vivo. In contrast to wild-type TCoB, an S65A, S128A double mutant and knock-down of the endogenous TCoB or Pak1 reduced microtubule polymerization, suggesting that Pak1 phosphorylation is necessary for normal TCoB function. Overexpression of TCoB dramatically increased the number of gamma-tubulin-containing microtubule-organizing centers, a phenotype reminiscent of cells overexpressing Pak1. TCoB was overexpressed and phosphorylated in breast tumors. These findings reveal a novel role for TCoB and Pak1 in regulating microtubule dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号