首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Loss-of-function ethylene insensitive 2 (EIN2) mutations showed ethylene insensitivity in Arabidopsis, which indicated an essential role of EIN2 in ethylene signaling. However, the function of EIN2 in fruit ripening has not been investigated. To gain a better understanding of EIN2, the temporal regulation of LeEIN2 expres- sion during tomato fruit development was analyzed. The expression of LeEIN2 was constant at different stages of fruit development, and was not regulated by ethylene. Moreover, LeEIN2-silenced tomato fruits were developed using a virus-induced gene silencing fruit system to study the role of LeEIN2 in tomato fruit ripening. Silenced fruits had a delay in fruit development and ripening, related to greatly descended expression of ethylene-related and ripening-related genes in comparison with those of control fruits. These results suggested LeEIN2 positively mediated ethylene signals during tomato development. In addition, there were fewer seeds and Iocules in the silenced fruit than those in the control fruit, like the phenotype of parthenocarpic tomato fruit. The content of auxin and the expression of auxin-regulated gene were declined in silenced fruit, which indicated that EIN2 might be important for crosstalk between ethylene and auxin hormones.  相似文献   

3.

Main conclusion

Systemic responses to an arbuscular mycorrhizal fungus reveal opposite phenological patterns in two tomato ripening mutants depending whether ethylene or light reception is involved. The availability of tomato ripening mutants has revealed many aspects of the genetics behind fleshy fruit ripening, plant hormones and light signal reception. Since previous analyses revealed that arbuscular mycorrhizal symbiosis influences tomato berry ripening, we wanted to test the hypothesis that an interplay might occur between root symbiosis and fruit ripening. With this aim, we screened seven tomato mutants affected in the ripening process for their responsiveness to the arbuscular mycorrhizal fungus Funneliformis mosseae. Following their phenological responses we selected two mutants for a deeper analysis: Green ripe (Gr), deficient in fruit ethylene perception and high-pigment-1 (hp-1), displaying enhanced light signal perception throughout the plant. We investigated the putative interactions between ripening processes, mycorrhizal establishment and systemic effects using biochemical and gene expression tools. Our experiments showed that both mutants, notwithstanding a normal mycorrhizal phenotype at root level, exhibit altered arbuscule functionality. Furthermore, in contrast to wild type, mycorrhization did not lead to a higher phosphate concentration in berries of both mutants. These results suggest that the mutations considered interfere with arbuscular mycorrhiza inducing systemic changes in plant phenology and fruits metabolism. We hypothesize a cross talk mechanism between AM and ripening processes that involves genes related to ethylene and light signaling.
  相似文献   

4.
5.
Increasing numbers of investigations indicate that ethylene response factor (ERF) proteins play important roles in plant stress responses via interacting with GCC box and/dehydration-responsive element/C-repeat to modulate expression of downstream genes, but the detailed regulatory mechanism is not well elucidated. Revealing the modulation pathway of ERF proteins in response to stresses is vital. Previously, we showed that tomato ERF protein TERF2/LeERF2 is ethylene inducible, and ethylene production is suppressed in antisense TERF2/LeERF2 tomatoes, suggesting that TERF2/LeERF2 functions as a positive regulator in ethylene biosynthesis. In this paper, we report that regulation of TERF2/LeERF2 in ethylene biosynthesis is associated with enhanced freezing tolerance of tobacco and tomato. Analysis of gene expression showed that cold slowly induces expression of TERF2/LeERF2 in tomato, implying that TERF2/LeERF2 may be involved in cold response through ethylene modulation. To test the hypothesis, we first observed that overexpressing TERF2/LeERF2 tobaccos not only enhances freezing tolerance via activating expression of cold-related genes, but also significantly reduces electrolyte leakage. In addition, with treatment of ethylene biosynthesis inhibitor or ethylene receptor antagonist, we then showed that blockage of ethylene biosynthesis or the ethylene signaling pathway decreases freezing tolerance of overexpressing TERF2/LeERF2 tobaccos. Moreover, the results from tomatoes showed that overexpressing TERF2/LeERF2 tomatoes enhances while antisense TERF2/LeERF2 transgenic lines decreases freezing tolerance, and application of ethylene precursor 1-aminocyclopropane-1-carboxylic acid restored freezing tolerance of antisense lines. Therefore our results establish that TERF2/LeERF2 enhances freezing tolerance of plants through ethylene biosynthesis and the ethylene signaling pathway.  相似文献   

6.
7.
8.
9.
10.
11.
An efficient somatic embryogenesis system for Physalis pubescens L. (husk tomato) was developed prior to transformation. Subsequently, cotyledonary explants of P. pubescens were transformed with a chimeric construct containing an iaaM gene from driven by the fruit-specific promoter 2A12 to develop parthenocarpic fruits. Following selection of explants on Murashige and Skoog (MS) medium containing containing 75 mg l−1 kanamycin (Km), 36 km-resistant callus clusters were recovered, and these were regenerated into whole plants. Expression of the iaaM gene was detected in confirmed transgenic fruits. The 0.9-kb 2A12 promoter was capable of directing expression of the introduced iaaM gene in transgenic P. pubescens fruits, but iaaM expression was absent from both leaves and flowers. Quantitative measurements of indole-3-acetic acid (IAA) content during fruit development indicated that the IAA levels in transgenic lines increased from anthesis through young fruits and peaked at fruit maturity. On average, IAA contents in transgenic fruits were two-fold higher than those in control fruits. Under greenhouse condition, vegetative growth, morphology, and the flowering of transgenic plants were comparable to those of control plants. However, the fruits of transgenic lines ripened earlier and had fewer seeds per fruit than did control plants.  相似文献   

12.
13.
The phytohormone ethylene is essential for ripening of climacteric fruits such as tomato. While many of the genes responsible for ethylene synthesis and perception have been identified, the regulatory network controlling autocatalytic climacteric ethylene synthesis is not well understood. In order to better understand the regulation of ripening-associated ethylene, we have exploited the genetic variation within Solanum Sect. Lycopersicon. In particular, we have used a near-isogenic population of S. habrochaites introgression lines to identify chromosome segments affecting ethylene emissions during ripening. S. habrochaites fruits produce much larger quantities of ethylene during ripening than do cultivated S. lycopersicum tomatoes. A total of 17 segments were identified; 3 had emissions more than twice the level of the tomato parent, 11 had less than a twofold increase and 3 had significantly reduced emissions at one or more ripening stages. While several of these segments co-segregate with known ethylene-related genes, many do not correspond to known genes. Thus, they may identify novel modes of regulation. These results illustrate the utility of wild relatives and their introgression lines to understand regulation of fruit ripening-related processes.  相似文献   

14.
The glycine-methylation biosynthetic pathway of glycinebetaine (GB) has been investigated, but only a few studies on GB accumulation in transgenic higher plants have utilized this pathway. In this study, two methyltransferase genes named ApGSMT2 and ApDMT2, encoding proteins catalyzing GB biosynthesis from glycine, were cloned from a relative strain of Aphanothece halophytica. The potential roles of ApGSMT2 and ApDMT2 in GB synthesis were first examined in transgenic Escherichia coli, which had increased levels of GB and improved salt tolerance. Then ApGSMT2 and ApDMT2 were transferred into tobacco. Compared with transgenic tobacco expressing betA, transgenic tobacco co-expressing ApGSMT2 and ApDMT2 accumulated more GB and exhibited enhanced drought resistance with better germination performance, higher relative water content, less cell membrane damage and better photosynthetic capacity under drought stress. We concluded that the ApGSMT2 and ApDMT2 genes cloned in this study will be very useful for engineering GB-accumulating transgenic plants with enhanced drought resistance.  相似文献   

15.
16.
17.
Three genes of the lipoxygenase (LOX) family in peach (Prunus persica var. compressa cv. Ruipan 4) were cloned, and their expression patterns during fruit ripening were analyzed using real-time quantitative PCR. All of the three peach LOX genes had been expressed during fruit ripening; however, their expression patterns were significantly different. During the normal ripening of peach fruits, the expression levels of PpLox1, PpLox2 and PpLox3 increased in varying degrees accompanying upsurge of ethylene evolution. After treated by methyl jasmonic acid (MeJA), the peak of ethylene releasing occurred in advance, and the declining rate of fruit hardness was accelerated, the expression level of the three peach LOX genes in fruits markedly enhanced at the early stage of storage, but significantly decreased at the late storage stage. So, it could be suggested that all three LOXs relate to fruit ripening; however, their functions might be different. PpLox1 expression increase along with the upsurge of ethylene evolution in both control and MeJA-treated peach fruits suggested that PpLox1 probably played a major role in the peach fruit ripening. Expression peak of PpLox2 appeared at the 1 DAH (days after harvest) in both control and MeJA-treated peach fruits, while obvious changes in ethylene evolution and fruit hardness was not observed, which suggested that the rise of PpLox2 expression can be induced by certain stimulation related to ripening, such as harvesting stress and MeJA treatment. The expression of PpLox3 kept a lower level in the natural ripening fruits, whereas raced up at the early stage of storage in the fruits treated with MeJA, which indicated that PpLox3 was expressed inductively and had minor roles during the normal ripening of peach fruits, but when encountered with external stimulation, its expression level would rapidly enhance and accelerate the ripening of peach fruit.  相似文献   

18.
19.
20.
The entire (e) locus of tomato (Solanum lycopersicum L.) controls leaf morphology. Dominant E and recessive e allele of the locus produce pinnate compound and complex reduced leaves. Previous research had indicated that SlIAA9, an Aux/IAA gene, was involved in tomato leaf morphology. Down-regulation of SlIAA9 gene by antisense transgenic method decreased the leaf complex of tomato and converted tomato compound leaves to simple leaves. The leaf morphology of these transgenic lines was similar with leaf morphology of tomato entire mutant. In this paper, we report that a single-base deletion mutation in the coding region of SlIAA9 gene results in tomato entire mutant phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号