首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
 In the mouse, Peg1/Mest is widely expressed in mesoderm-derived tissues. In separate studies, it has been shown to be maternally imprinted, that is, only the paternally inherited allele is active in mice and in humans. Here, we provide evidence that Peg1/Mest is expressed at very low levels in all tissues of adult mice as assessed by RT-PCR. Moreover, by using species-specific polymorphisms in the Peg1/Mest sequence we can demonstrate that in adult mice the gene remains imprinted in all of these tissues. Received: 24 November 1997 / Accepted: 11 February 1998  相似文献   

3.
4.
5.
When skeletal muscle fibers are injured, they regenerate and grow until their sizes are adjusted to surrounding muscle fibers and other relevant organs. In this study, we examined whether Mest, one of paternally expressed imprinted genes that regulates body size during development, and miR-335 located in the second intron of the Mest gene play roles in muscle regeneration. We generated miR-335-deficient mice, and found that miR-335 is a paternally expressed imprinted microRNA. Although both Mest and miR-335 are highly expressed during muscle development and regeneration, only Mest+/- (maternal/paternal) mice show retardation of body growth. In addition to reduced body weight in Mest+/-; DMD-null mice, decreased muscle growth was observed in Mest+/- mice during cardiotoxin-induced regeneration, suggesting roles of Mest in muscle regeneration. Moreover, expressions of H19 and Igf2r, maternally expressed imprinted genes were affected in tibialis anterior muscle of Mest+/-; DMD-null mice compared to DMD-null mice. Thus, Mest likely mediates muscle regeneration through regulation of imprinted gene networks in skeletal muscle.  相似文献   

6.
7.
Jiang H  Sun B  Wang W  Zhang Z  Gao F  Shi G  Cui B  Kong X  He Z  Ding X  Kuang Y  Fei J  Sun YJ  Feng Y  Jin Y 《Cell research》2007,17(9):792-803
Parthenogenetic embryonic stem (pES) cells provide a valuable in vitro model system for studying the molecular mechanisms that underlie genomic imprinting. However, the pluripotency of pES cells and the expression profiles of paternally expressed imprinted genes have not been fully explored. In this study, three mouse pES cell lines were established and the differentiation potential of these cells in extended culture was evaluated. The undifferentiated cells had a normal karyotype and homozygous genome, and expressed ES-cell-specific molecular markers. The cells remained undifferentiated after more than 50 passages and exhibited pluripotent differentiation capacity. All three lines of the established ES cells produced teratomas; two lines of ES cells produced chimeras and germline transmission. Furthermore, activation of the paternally expressed imprinted genes Snrpn, U2afl-rsl, Peg3, Impact, Zfp127, Dlkl and Mest in these cells was detected. Some paternally expressed imprinted genes were found to be expressed in the blastocyst stage of parthenogenetically activated embryos in vitro and their expression level increased with extended pES cell culture. Furthermore, our data show that the activation of these paternally expressed imprinted genes in pES cells was associated with a change in the methylation of the related differentially methylated regions. These findings provide direct evidence for the pluripotency of pES cells and demonstrate the association between the DNA methylation pattern and the activa- tion of paternally expressed imprinted genes in pES cells. Thus, the established ES cell lines provide a valuable model for studying epigenetic regulation in mammalian development.  相似文献   

8.
9.
10.
The effect of transforming growth factor alpha (TGFt) on the expression of imprinted Igf2 and Peg1/Mest genes was studied in diploid parthenogenetic embryos (PEs) of (CBA x C57BL/6)F1 mice during the postimplantation period of embryogenesis. The PEs were treated with TGFalpha in vitro at the morula stage and, after they developed to the blastocyst stage, were implanted into the uterus of false-pregnant females. On the tenth day of pregnancy, the PEs were explanted for subsequent in vitro culturing for 24 or 48 h. The expression of the imprinted Igf2 and Peg1/Mest genes was studied by means of whole mount in situ hybridization using digoxigenin-labeled antisense RNAs. The expression of the imprinted Igf2 and Peg1/Mest genes was studied in embryos on the tenth day of in utero development before culturing and after 24 and 48 h of culturing in vitro. The expression of Igf2 before culturing was detected only in the brain of 60% of PEs on the tents day of pregnancy (the 21-to 25-somite stages); while the Peg1/Mest expression was not detected at all. In control (not treated with TGFalpha) PEs, neither gene was expressed at the same 21- to 25-somite stages. After 24 h of culturing, the Igf2 expression was detected in the brain of 71% of PEs at the 30- to 35-somite stages, while the Peg1/Mest expression was not detected. In control (untreated) PEs, neither imprinted gene was expressed at the 30- to 35-somite stage. After 48 h of culturing, Igf2 was expressed in the regions of the brain, developing jaws, heart, liver, and somites of all TGFalpha-treated PEs at the 40- to 45-somite stages; and Peg1/Mest was expressed in the brain, heart, and liver of these embryos. In control (untreated) PEs, neither Igf2 nor Peg1/Mest was expressed at these stages The expression patterns of the imprinted Igf2 and Peg1/Mest genes in PEs at the most advanced developmental stages (40-45 somites) and in normal (fertilized) embryos at the same stages were similar; however, their expression rate in PEs was substantially lower than in normal embryos. These data indicate that exogenous TGFalpha can reactivate the expression of the two imprinted genes, modulating the effects of genomic imprinting in such a way that the PE development is improved and substantially prolonged.  相似文献   

11.
Methylation dynamics of imprinted genes in mouse germ cells   总被引:20,自引:0,他引:20  
  相似文献   

12.
13.
14.
Netrin-1 has been shown to regulate the function of the EGF-like protein Cripto-1 (Cr-1) and affect mammary gland development. Since Cr-1 is a target gene of Nanog and Oct4, we investigated the relationship between Netrin-1 and Cr-1, Nanog and Oct4 during different stages of development in the mouse mammary gland. Results from histological analysis show that exogenous Netrin-1 was able to induce formation of alveolar-like structures within the mammary gland terminal end buds of virgin transgenic Cripto-1 mice and enhance mammary gland alveologenesis in early pregnant FVB/N mice. Results from immunostaining and Western blot analysis show that Netrin-1, Nanog and Oct4 are expressed in the mouse embryonic mammary anlage epithelium while Cripto-1 is predominantly expressed outside this structure in the surrounding mesenchyme. We find that in lactating mammary glands of postnatal FVB/N mice, Netrin-1 expression is highest while Cripto-1 and Nanog levels are lowest indicating that Netrin-1 may perform a role in the mammary gland during lactation. HC-11 mouse mammary epithelial cells stimulated with lactogenic hormones and exogenous soluble Netrin-1 showed increased beta-casein expression as compared to control thus supporting the potential role for Netrin-1 during functional differentiation of mouse mammary epithelial cells. Finally, mouse ES cells treated with exogenous soluble Netrin-1 showed reduced levels of Nanog and Cripto-1 and higher levels of beta-III tubulin during differentiation. These results suggest that Netrin-1 may facilitate functional differentiation of mammary epithelial cells and possibly affect the expression of Nanog and/or Cripto-1 in multipotent cells that may reside in the mammary gland.  相似文献   

15.
The effect of transforming growth factor α (TGFα) on the expression of imprinted Igf2 and Peg1/Mest genes was studied in diploid parthenogenetic embryos (PEs) of (CBA × C57BL/6)F1 mice during the postimplantation period of embryogenesis. The PEs were treated with TGFα in vitro at the morula stage and, after they developed to the blastocyst stage, were implanted into the uterus of false-pregnant females. On the tenth day of pregnancy, the PEs were explanted for subsequent in vitro culturing for 24 or 48 h. The expression of the imprinted Igf2and Peg1/Mest genes was studied by means of whole mount in situ hybridization using digoxigenin-labeled antisense RNAs. The expression of the imprinted Igf2 and Peg1/Mest genes was studied in embryos on the tenth day of in utero development before culturing and after 24 and 48 h of culturing in vitro. The expression of Igf2 before culturing was detected only in the brain of 60% of PEs on the tents day of pregnancy (the 21-to 25-somite stages); while the Peg1/Mest expression was not detected at all. In control (not treated with TGFα) PEs, neither gene was expressed at the same 21-to 25-somite stages. After 24 h of culturing, the Igf2 expression was detected in the brain of 71% of PEs at the 30-to 35-somite stages, while the Peg1/Mes t expression was not detected. In control (untreated) PEs, neither imprinted gene was expressed at the 30-to 35-somite stage. After 48 h of culturing, Igf2 was expressed in the regions of the brain, developing jaws, heart, liver, and somites of all TGFα-treated PEs at the 40-to 45-somite stages; and Peg1/Mest was expressed in the brain, heart, and liver of these embryos. In control (untreated) PEs, neither Igf2 nor Peg1/Mest was expressed at these stages The expression patterns of the imprinted Igf2 and Peg1/Mest genes in PEs at the most advanced developmental stages (40–45 somites) and in normal (fertilized) embryos at the same stages were similar; however, their expression rate in PEs was substantially lower than in normal embryos. These data indicate that exogenous TGFα can reactivate the expression of the two imprinted genes, modulating the effects of genomic imprinting in such a way that the PE development is improved and substantially prolonged.  相似文献   

16.
Bone morphogenetic proteins (BMPs) have been implicated in the control of proliferation, tissue formation, and differentiation. BMPs regulate the biology of stem and progenitor cells and can promote cellular differentiation, depending on the cell type and context. Although the BMP pathway is known to be involved in early embryonic development of the mammary gland via mesenchymal cells, its role in later epithelial cellular differentiation has not been examined. The majority of the mammary gland development occurs post-natal, and its final functional differentiation is characterized by the emergence of alveolar cells that produce milk proteins. Here, we tested the hypothesis that bone morphogenetic protein receptor 1A (BMPR1A) function was required for mammary epithelial cell differentiation. We found that the BMPR1A-SMAD1/5/8 pathway was predominantly active in undifferentiated mammary epithelial cells, compared with differentiated cells. Reduction of BMPR1A mRNA and protein, using short hairpin RNA, resulted in a reduction of SMAD1/5/8 phosphorylation in undifferentiated cells, indicating an impact on this pathway. When the expression of the BMPR1A gene knocked down in undifferentiated cells, this also prevented beta-casein production during differentiation of the mammary epithelial cells by lactogenic hormone stimulation. Addition of Noggin, a BMP antagonist, also prevented beta-casein expression. Together, this demonstrated that BMP-BMPR1A-SMAD1/5/8 signal transduction is required for beta-casein production, a marker of alveolar cell differentiation. This evidence functionally identifies BMPR1A as a potential new regulator of mammary epithelial alveolar cell differentiation.  相似文献   

17.
Mammary epithelial cells terminally differentiate in response to lactogenic hormones. We present evidence that oncoprotein overexpression is incompatible with this hormone-inducible differentiation and results in striking cellular morphological changes. In mammary epithelial cells in culture, lactogenic hormones (glucocorticoid and prolactin) activated a transfected beta-casein promoter and endogenous beta-casein gene expression. This response to lactogenic hormone treatment was paralleled by a decrease in cellular AP-1 DNA-binding activity. Expression of the mos, ras, or src (but not myc) oncogene blocked the activation of the beta-casein promoter induced by the lactogenic hormones and was associated with the maintenance of high levels of AP-1. Mos expression also increased c-fos and c-jun mRNA levels. Overexpression of Fos and Jun from transiently transfected constructs resulted in a functional inhibition of the glucocorticoid receptor in these mouse mammary epithelial cells. This finding clearly suggests that glucocorticoid receptor inhibition arising from oncogene expression will contribute to the block in hormonally induced mammary epithelial cell differentiation. Expression of Src resulted in the loss of the normal organization and morphological phenotype of mammary epithelial cells in the epithelial/fibroblastic line IM-2. Activation of a conditional c-fos/estrogen receptor gene encoding an estrogen-dependent Fos/estrogen receptor fusion protein also morphologically transformed mammary epithelial cells and inhibited initiation of mammary epithelial differentiation-associated expression of the beta-casein and WDNM 1 genes. In response to estrogen treatment, the cells displayed a high level of AP-1 DNA-binding activity. Our results demonstrate that high cellular AP-1 levels contribute to blocking the ability of mammary epithelial cells in culture to respond to lactogenic hormones. This and other studies indicate that the oncogene products Mos, Ras, and Src exert their effects, at least in part, by stimulating cellular Fos and probably cellular Jun activity.  相似文献   

18.
Scully S  Yan W  Bentley B  Cao QJ  Shao R 《PloS one》2011,6(10):e25819
We previously reported that a secreted glycoprotein YKL-40 acts as an angiogenic factor to promote breast cancer angiogenesis. However, its functional role in normal mammary gland development is poorly understood. Here we investigated its biophysiological activity in mammary epithelial development and mammary tissue morphogenesis. YKL-40 was expressed exclusively by ductal epithelial cells of parous and non-parous mammary tissue, but was dramatically up-regulated at the beginning of involution. To mimic ductal development and explore activity of elevated YKL-40 during mammary tissue regression in vivo, we grew a mammary epithelial cell line 76N MECs in a 3-D Matrigel system in the presence of lactogenic hormones including prolactin, hydrocortisone, and insulin. Treatment of 76N MECs with recombinant YKL-40 significantly inhibited acinar formation, luminal polarization, and secretion. YKL-40 also suppressed expression of E-cadherin but increased MMP-9 and cell motility, the crucial mechanisms that mediate mammary tissue remodeling during involution. In addition, engineering of 76N MECs with YKL-40 gene to express ectopic YKL-40 recapitulated the same activities as recombinant YKL-40 in the inhibition of cell differentiation. These results suggest that YKL-40-mediated inhibition of cell differentiation and polarization in the presence of lactogenic hormones may represent its important function during mammary tissue involution. Identification of this biophysiological property will enhance our understanding of its pathologic role in the later stage of breast cancer that is developed from poorly differentiated and highly invasive cells.  相似文献   

19.
20.
Summary Mammary epithelial cells from lactating mice synthesize and secrete lactose in culture and retain many features of their in vivo morphology if mammary glands are only partially dissociated to alveoli, rather than completely dissociated to single cells. After 5 d in culture lactose synthesis by alveoli cultured on floating collagen gels is 10 to 20 times higher than in cultures of single cells on floating collagen gels. Moreover, mammary alveoli in culture retain sensitivity to lactogenic hormones; the synthesis of lactose by alveoli depends on the continued presence of insulin and either hydrocortisone or prolactin. In addition, within alveoli the original juxtaposition of constituent epithelial cells is retained, and cells are cuboidal and have many microvilli and fat droplets. In contrast, alveoli on attached gels flatten and lose their secretory morphology. These results indicate that the shape of the cells, presence of lactogenic hormones, and maintenance of epithelial:epithelial cell contacts are required for maintenance of mammary epithelial cell differentiation in culture. This research was supported by Grants CA-16392 and AG-02909 from the National Institutes of Health and Institutional Grant IN 119 from the American Cancer Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号