共查询到20条相似文献,搜索用时 0 毫秒
1.
Niloufar Yousefi Shahla Abdollahii Mohammad Amin Jadidi Kouhbanani Ali Hassanzadeh 《Journal of cellular physiology》2020,235(12):9166-9184
Based on investigations, there exist tight correlations between neurodegenerative diseases' incidence and progression and aberrant protein aggregreferates in nervous tissue. However, the pathology of these diseases is not well known, leading to an inability to find an appropriate therapeutic approach to delay occurrence or slow many neurodegenerative diseases' development. The accessibility of induced pluripotent stem cells (iPSCs) in mimicking the phenotypes of various late-onset neurodegenerative diseases presents a novel strategy for in vitro disease modeling. The iPSCs provide a valuable and well-identified resource to clarify neurodegenerative disease mechanisms, as well as prepare a promising human stem cell platform for drug screening. Undoubtedly, neurodegenerative disease modeling using iPSCs has established innovative opportunities for both mechanistic types of research and recognition of novel disease treatments. Most important, the iPSCs have been considered as a novel autologous cell origin for cell-based therapy of neurodegenerative diseases following differentiation to varied types of neural lineage cells (e.g. GABAergic neurons, dopamine neurons, cortical neurons, and motor neurons). In this review, we summarize iPSC-based disease modeling in neurodegenerative diseases including Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease. Moreover, we discuss the efficacy of cell-replacement therapies for neurodegenerative disease. 相似文献
2.
Lazennec G 《Médecine sciences : M/S》2011,27(3):285-288
Mesenchymal stem cells (MSC) have attracted recent attention for their cell therapy potential, based in particular on their immunosuppressive properties, which have served as the basis for the treatment of autoimmune diseases. Interestingly, MSC have been used in cell therapy strategies to deliver therapeutical genes. Cell therapy approaches taking advantages of MSC have been proposed, as MSC display a potential tropsim for tumors. However, all these strategies raise a series of questions about the safety of MSC, as MSC could enhance tumor growth and metastasis. This review summarizes recent findngs about MSC in carcinogenesis. 相似文献
3.
Intervention with mesenchymal stem cells (MSCs) represents a promising therapeutic tool in treatment-refractory autoimmune
diseases. A new report by Schurgers and colleagues in a previous issue of Arthritis Research & Therapy sheds novel mechanistic insight into the pathways employed by MSCs to suppress T-cell proliferation in vitro, but, at the same time, indicates that MSCs do not influence T-cell reactivity and the disease course in an in vivo arthritis model. Such discrepancies between the in vitro and in vivo effects of potent cellular immune modulators should spark further research and should be interpreted as a sign of caution
for the in vitro design of MSC-derived interventions in the setting of human autoimmune diseases. 相似文献
4.
Venkata Ramesh Dasari Krishna Kumar Veeravalli Dzung H Dinh 《World journal of stem cells》2014,6(2):120-133
With technological advances in basic research,the intricate mechanism of secondary delayed spinal cord injury(SCI)continues to unravel at a rapid pace.However,despite our deeper understanding of the molecular changes occurring after initial insult to the spinal cord,the cure for paralysis remains elusive.Current treatment of SCI is limited to early administration of high dose steroids to mitigate the harmful effect of cord edema that occurs after SCI and to reduce the cascade of secondary delayed SCI.R ecent evident-based clinical studies have cast doubt on the clinical benefit of steroids in SCI and intense focus on stem cell-based therapy has yielded some encouraging results.An array of mesenchymal stem cells(MSCs)from various sources with novel and promising strategies are being developed to improve function after SCI.In this review,we briefly discuss the pathophysiology of spinal cord injuries and characteristics and the potential sources of MSCs that can be used in the treatment of SCI.We will discuss the progress of MSCs application in research,focusing on the neuroprotective properties of MSCs.Finally,we will discuss the results from preclinical and clinical trials involving stem cell-based therapy in SCI. 相似文献
5.
Can neural stem cells be used as therapeutic vehicles in the treatment of brain tumors? 总被引:2,自引:0,他引:2
Noble M 《Nature medicine》2000,6(4):369-370
6.
Maria Teresa Valenti Antonio Mori Giovanni Malerba Luca Dalle Carbonare 《World journal of stem cells》2015,7(5):789-792
Mesenchymal stem cells (MSCs) are progenitor cells capable of self-renewal that can differentiate in multiple tissues and, under specific and standardized culture conditions, expand in vitro with little phenotypic alterations. In recent years, preclinical and clinical studies have focused on MSC analysis and understanding the potential use of these cells as a therapy in a wide range of pathologies, and many applications have been tested. Clinical trials using MSCs have been performed (e.g., for cardiac events, stroke, multiple sclerosis, blood diseases, auto-immune disorders, ischemia, and articular cartilage and bone pathologies), and for many genetic diseases, these cells are considered an important resource. Considering of the biology of MSCs, these cells may also be useful tools for understanding the physiopathology of different diseases, and they can be used to develop specific biomarkers for a broad range of diseases. In this editorial, we discuss the literature related to the use of MSCs for diagnostic applications and we suggest new technologies to improve their employment. 相似文献
7.
Péault B 《Médecine sciences : M/S》2011,27(3):227-228
8.
9.
10.
Florence Appaix Marie-France Nissou Boudewijn van der Sanden Matthieu Dreyfus Franois Berger Jean-Paul Issartel Didier Wion 《World journal of stem cells》2014,6(2):134-143
Multipotent mesenchymal stromal cells(MSC),have the potential to differentiate into cells of the mesenchymal lineage and have non-progenitor functions including immunomodulation.The demonstration that MSCs are perivascular cells found in almost all adult tissues raises fascinating perspectives on their role in tissue maintenance and repair.However,some controversies about the physiological role of the perivascular MSCs residing outside the bone marrow and on their therapeutic potential in regenerative medicine exist.In brain,perivascular MSCs like pericytes and adventitial cells,could constitute another stem cell population distinct to the neural stem cell pool.The demonstration of the neuronal potential of MSCs requires stringent criteria including morphological changes,the demonstration of neural biomarkers expression,electrophysiological recordings,and the absence of cell fusion.The recent finding that brain cancer stem cells can transdifferentiate into pericytes is another facet of the plasticity of these cells.It suggests that the perversion of the stem cell potential of pericytes might play an even unsuspected role in cancer formation and tumor progression. 相似文献
11.
12.
13.
Are folliculo-stellate cells in the anterior pituitary gland supportive cells or organ-specific stem cells? 总被引:4,自引:0,他引:4
Inoue K Mogi C Ogawa S Tomida M Miyai S 《Archives of physiology and biochemistry》2002,110(1-2):50-53
Folliculo-stellate cells (FS-cells) in the anterior pituitary gland are star-shaped cells and form tiny follicles. FS-cells are positive for S-100 protein and produce many cytokines or growth factors, such as interleukin-6 (IL-6), leukemia inhibitory factor (LIF), basic fibroblastic growth factor (bFGF) and vascular endothelial cell growth factor (VEGF). Therefore, it is generally accepted that FS-cells regulate endocrine cells through these growth factors. FS-cells also exhibit a phagocytotic activity and are known to work as scavenger cells. In addition to these functions, FS-cells are considered to have some unknown functions. In order to reveal the biological significance of FS-cells in the anterior pituitary gland, we performed a morphological study and obtained some new findings. First, we were interested in the colloid formation in the senescent porcine pituitary gland. We analyzed the colloids and found that clusterin is a major protein in them. We also found that the accumulation of clusterin in the colloids is related to the phagocytotic activity of FS-cells. In our next study, we found that FS-cells have the potential to differentiate into striated muscle cells. From FS-cells show multi-potent cell character and other cytological evidence, we propose that FS-cells are candidate of organ-specific stem cells in the anterior pituitary gland. 相似文献
14.
15.
V.B. Fernández Vallone M.A. Romaniuk H. Choi V. Labovsky J. Otaegui N.A. Chasseing 《Differentiation; research in biological diversity》2013,85(1-2):1-10
The considerable therapeutic potential of human multipotent mesenchymal stromal cells or mesenchymal stem cells (MSCs) has generated increasing interest in a wide variety of biomedical disciplines. Nevertheless, researchers report studies on MSCs using different methods of isolation and expansion, as well as different approaches to characterize them; therefore, it is increasingly difficult to compare and contrast study outcomes. To begin to address this issue, the Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy proposed minimal criteria to define human MSCs. First, MSCs must be plastic-adherent when maintained in standard culture conditions (α minimal essential medium plus 20% fetal bovine serum). Second, MSCs must express CD105, CD73 and CD90, and MSCs must lack expression of CD45, CD34, CD14 or CD11b, CD79α or CD19 and HLA-DR surface molecules. Third, MSCs must differentiate into osteoblasts, adipocytes and chondroblasts in vitro. MSCs are isolated from many adult tissues, in particular from bone marrow and adipose tissue. Along with their capacity to differentiate and transdifferentiate into cells of different lineages, these cells have also generated great interest for their ability to display immunomodulatory capacities. Indeed, a major breakthrough was the finding that MSCs are able to induce peripheral tolerance, suggesting that they may be used as therapeutic tools in immune-mediated disorders. Although no significant adverse events have been reported in clinical trials to date, all interventional therapies have some inherent risks. Potential risks for undesirable events, such as tumor development, that might occur while using these stem cells for therapy must be taken into account and contrasted against the potential benefits to patients. 相似文献
16.
Yvonne Welte James Adjaye Hans R Lehrach Christian RA Regenbrecht 《Cell communication and signaling : CCS》2010,8(1):1-10
Background
The fibroblast growth factor receptor (FGFR) interprets concentration gradients of FGF ligands and structural changes in the heparan sulfate (HS) co-receptor to generate different cellular responses. However, whether the FGFR generates different signals is not known.Results
We have previously shown in rat mammary fibroblasts that in cells deficient in sulfation, and so in HS co-receptor, FGF-2 can only stimulate a transient phosphorylation of p42/44MAPK and so cannot stimulate DNA synthesis. Here we demonstrate that this is because in the absence of HS, FGF-2 fails to stimulate the phosphorylation of the adaptor FGFR substrate 2 (FRS2). In cells possessing the HS co-receptor, FGF-2 elicits a bell-shaped dose response: optimal concentrations stimulate DNA synthesis, but supramaximal concentrations (≥ 100 ng/mL) have little effect. At optimal concentrations (300 pg/mL) FGF-2 stimulates a sustained dual phosphorylation of p42/44MAPK and tyrosine phosphorylation of FRS2. In contrast, 100 ng/mL FGF-2 only stimulates a transient early peak of p42/44MAPK phosphorylation and fails to stimulate appreciably the phosphorylation of FRS2 on tyrosine.Conclusions
These results suggest that the nature of the FGFR signal produced is determined by a combination of the HS co-receptor and the concentration of FGF ligand. Both the phosphorylation of the adaptor FRS2, the kinetics (sustained or transient) of phosphorylation of p42/44(MAPK) are varied, and so differing cellular responses are produced. 相似文献17.
Most reviews of adult stem cells focus on the relatively undifferentiated cells dedicated to the renewal of rapidly proliferating tissues, such as the skin, gut and blood. By contrast, there is mounting evidence that organs and tissues such as the liver and pancreatic islets, which turn over more slowly, use alternative strategies, including the self-renewal of differentiated cells. The response of these organs to injury may also reveal the potential of differentiated cells to act as stem cells. The lung shows both slow turnover and rapid repair. New experimental approaches, including those based on studies of embryonic development, are needed to identify putative lung stem cells and strategies of lung homeostasis and repair. 相似文献
18.
Somatic plasticity of neural stem cells: Fact or fancy? 总被引:1,自引:0,他引:1
Several studies have described the potential for embryonic and adult neural stem cells to differentiate into non-neural cells such as muscle and blood, tissues that are derived from non-neuroectodermal germ layers. This raised the exciting possibility that these cells possessed a broader range of differentiation potential than originally thought and raised interesting prospects for possible transplantation utilization. However, a number of recent reports have raised questions about whether the phenomena observed actually represented true somatic plasticity. In this review, we critically analyze these studies with the aim of providing some criteria by which future studies that address this important problem may be evaluated. 相似文献
19.
20.
Cycling glial precursors-"NG2-glia"-are abundant in the developing and mature central nervous system (CNS). During development, they generate oligodendrocytes. In culture, they can revert to a multipotent state, suggesting that they might have latent stem cell potential that could be harnessed to treat neurodegenerative disease. This hope has been subdued recently by a series of fate-mapping studies that cast NG2-glia as dedicated oligodendrocyte precursors in the healthy adult CNS-though rare, neuron production in the piriform cortex remains a possibility. Following CNS damage, the repertoire of NG2-glia expands to include Schwann cells and possibly astrocytes-but so far not neurons. This reaffirms the central role of NG2-glia in myelin repair. The realization that oligodendrocyte generation continues throughout normal adulthood has seeded the idea that myelin genesis might also be involved in neural plasticity. We review these developments, highlighting areas of current interest, contention, and speculation. 相似文献