首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibroblast growth factor 2 (FGF2) positively modulates osteoblast differentiation and bone formation. However, the mechanism(s) is not fully understood. Because the Wnt canonical pathway is important for bone homeostasis, this study focuses on modulation of Wnt/β-catenin signaling using Fgf2(-/-) mice (FGF2 all isoforms ablated), both in the absence of endogenous FGF2 and in the presence of exogenous FGF2. This study demonstrates a role of endogenous FGF2 in bone formation through Wnt signaling. Specifically, mRNA expression for the canonical Wnt genes Wnt10b, Lrp6, and β-catenin was decreased significantly in Fgf2(-/-) bone marrow stromal cells during osteoblast differentiation. In addition, a marked reduction of Wnt10b and β-catenin protein expression was observed in Fgf2(-/-) mice. Furthermore, Fgf2(-/-) osteoblasts displayed marked reduction of inactive phosphorylated glycogen synthase kinase-3β, a negative regulator of Wnt/β-catenin pathway as well as a significant decrease of Dkk2 mRNA, which plays a role in terminal osteoblast differentiation. Addition of exogenous FGF2 promoted β-catenin nuclear accumulation and further partially rescued decreased mineralization in Fgf2(-/-) bone marrow stromal cell cultures. Collectively, our findings suggest that FGF2 stimulation of osteoblast differentiation and bone formation is mediated in part by modulating the Wnt pathway.  相似文献   

2.
Fibroblast growth factor (FGF) receptors constitute a family of four membrane-spanning tyrosine kinases (FGFR1-4) which serve as high-affinity receptors for 17 growth factors (FGF1-17). To study functions of FGF/ FGFR signals in development, mice that carry mutations in each receptor have been created by gene targeting. Analysis of these mutant mice revealed essential functions of FGF receptors in multiple biological processes, including mesoderm induction and patterning, cell growth and migration, organ formation and bone growth. In this review we discuss recent work with FGF receptors to illustrate mechanisms, through which the FGF/FGFR signals specify vertebrate limb initiation, outgrowth and patterning.  相似文献   

3.
Digit and interdigit (D/ID) development is one of the important research fields in molecular developmental biology. Interdigital cell death (ICD) is a morphogenetic event which has been considered as an essential process for D/ID formation. Although some growth factors including Bmp and Fgf signaling can modulate ICD, growth factor crosstalk regulating ICD is poorly understood. Wnt canonical pathway and Bmp signal crosstalk has been considered as the essential growth factor crosstalk in organogenesis. To elucidate the crosstalk to regulate the D/ID formation, we analyzed conditional mutant mice with limb bud ectoderm expressing constitutively activated β-catenin signaling. We showed that modulation of Wnt/β-catenin signal in the limb ectoderm including the AER regulates ID apoptosis. We also demonstrated that Wnt/β-catenin signaling in the ectoderm can positively regulate Fgf8 possibly antagonizing the epithelial derived Bmp signaling. Human birth defects for digit abnormalities have been known to be affected by multiple parameters. Elucidation of the potential mechanisms underlying such D/ID development is an urgent medical issue to be solved. This work would be one of the first studies showing essential growth factor cascades in the D/ID formation.  相似文献   

4.
A variety of cytokines have been reported to be able to recognize specific carbohydrate moieties. To date, the role of carbohydrate recognition in cytokine function has been analyzed for several cytokines, including fibroblast growth factor (FGF), tumor necrosis factor (TNF)-alpha, and interleukin (IL)-2. The FGF family and their receptors have been found to recognize a heparan sulfate proteoglycan, which generates rigid complexes that induce signal transduction. We have found that IL-2 recognizes a high-mannose type glycan on the alpha subunit of the IL-2 receptor as well as a peptide portion of this subunit. Blocking this carbohydrate-IL-2 interaction diminished IL-2-induced signaling and T-cell proliferation. We have also shown that TNF-alpha recognizes the second mannose 6-phosphate diester of the glycan portion of glycosylphosphatidylinositol (GPI)-anchored glycoproteins. Blocking this GPI-anchored glycan-TNF-alpha interaction abrogates TNF-alpha-induced apoptosis. We aim to increase the number of cytokines which modulate their functions through the unique carbohydrate recognition, and open the way to systematically elucidate the biological functions of cytokine-carbohydrate interaction in immune system.  相似文献   

5.
Cancer-induced muscle wasting, i.e. cachexia, is associated with different types of cancer such as pancreatic, colorectal, lung, liver, gastric and esophageal. Cachexia affects prognosis and survival in cancer, and it is estimated that it will be the ultimate cause of death for up to 30% of cancer patients. Musculoskeletal alterations are known hallmarks of cancer cachexia, with skeletal muscle atrophy and weakness as the most studied. Recent evidence has shed light on the presence of bone loss in cachectic patients, even in the absence of bone-metastatic disease. In particular, we and others have shown that muscle and bone communicate by exchanging paracrine and endocrine factors, known as myokines and osteokines. This review will focus on describing the role of the most studied myokines, such as myostatin, irisin, the muscle metabolite β-aminoisobutyric acid, BAIBA, and IL-6, and osteokines, including TGF-β, osteocalcin, sclerostin, RANKL, PTHrP, FGF23, and the lipid mediator, PGE2 during cancer-induced cachexia. The interplay of muscle and bone factors, together with tumor-derived soluble factors, characterizes a complex clinical scenario in which musculoskeletal alterations are amongst the most debilitating features. Understanding and targeting the “secretome” of cachectic patients will likely represent a promising strategy to preserve bone and muscle during cancer cachexia thereby enhancing recovery.  相似文献   

6.
7.
Smooth muscle cell proliferation can be inhibited by heparan sulfate proteoglycans whereas the removal or digestion of heparan sulfate from perlecan promotes their proliferation. In this study we characterized the glycosaminoglycan side chains of perlecan isolated from either primary human coronary artery smooth muscle or endothelial cells and determined their roles in mediating cell adhesion and proliferation, and in fibroblast growth factor (FGF) binding and signaling. Smooth muscle cell perlecan was decorated with both heparan sulfate and chondroitin sulfate, whereas endothelial perlecan contained exclusively heparan sulfate chains. Smooth muscle cells bound to the protein core of perlecan only when the glycosaminoglycans were removed, and this binding involved a novel site in domain III as well as domain V/endorepellin and the α2β1 integrin. In contrast, endothelial cells adhered to the protein core of perlecan in the presence of glycosaminoglycans. Smooth muscle cell perlecan bound both FGF1 and FGF2 via its heparan sulfate chains and promoted the signaling of FGF2 but not FGF1. Also endothelial cell perlecan bound both FGF1 and FGF2 via its heparan sulfate chains, but in contrast, promoted the signaling of both growth factors. Based on this differential bioactivity, we propose that perlecan synthesized by smooth muscle cells differs from that synthesized by endothelial cells by possessing different signaling capabilities, primarily, but not exclusively, due to a differential glycanation. The end result is a differential modulation of cell adhesion, proliferation and growth factor signaling in these two key cellular constituents of blood vessels.  相似文献   

8.
We have developed an in vivo mouse model, the green fluorescent protein (GFP)/carbon tetrachloride (CCl4) model, and have previously reported that transplanted GFP-positive bone marrow cells (BMCs) differentiate into hepatocytes via hepatoblast intermediates. Here, we have investigated the growth factors that are closely related to the differentiation of transplanted BMCs into hepatocytes, and the way that a specific growth factor affects the differentiation process in the GFP/CCl4 model. We performed immunohistochemical analysis to identify an important growth factor in our model, viz., fibroblast growth factor (FGF). In liver samples, the expression of FGF1 and FGF2 and of FGF receptors (FGFRs; FGFR1, FGFR2) was significantly elevated with time after bone marrow transplantation (BMT) compared with other factors, and co-expression of GFP and FGFs or FGFRs could be detected. We then analyzed the effect and molecular mechanism of FGF signaling on the enhancement of BMC differentiation into hepatocytes by immunohistochemistry, immunoblotting, and microarray analysis. Treatment with recombinant FGF (rFGF), especially rFGF2, elevated the repopulation rate of GFP-positive cells in the liver and significantly increased the expression of both Liv2 (hepatoblast marker) and albumin (hepatocyte marker). Administration of rFGF2 at BMT also raised serum albumin levels and improved the survival rate. Transplantation of BMCs with rFGF2 specifically activated tumor necrosis factor-alpha (TNF-α) signaling. Thus, FGF2 facilitates the differentiation of transplanted BMCs into albumin-producing hepatocytes via Liv2-positive hepatoblast intermediates through the activation of TNF-α signaling. Administration of FGF2 in combination with BMT improves the liver function and prognosis of mice with CCl4-induced liver damage. This study was supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (nos. 13470121, 13770262, 15790348, 16390211, and 16590597) and for translational research from the Ministry of Health, Labor and Welfare (H-trans-5).  相似文献   

9.
10.
Epithelial-to-mesenchymal transition (EMT) plays a critical role in cancer metastasis, and is regulated by growth factors such as transforming growth factor β (TGF-β) and fibroblast growth factors (FGF) secreted from the stromal and tumor cells. However, the role of growth factors in EMT has not been fully established. Several integrins are upregulated by TGF-β1 during EMT. Integrins are involved in growth factor signaling through integrin-growth factor receptor crosstalk. We previously reported that FGF1 directly binds to integrin αvβ3 and the interaction was required for FGF1 functions such as cell proliferation and migration. We studied the role of αvβ3 induced by TGF-β on TGF-β-induced EMT. Here, we describe that FGF1 augmented EMT induced by TGF-β1 in MCF10A and MCF12A mammary epithelial cells. TGF-β1 markedly amplified integrin αvβ3 and FGFR1 (but not FGFR2). We studied if the enhancing effect of FGF1 on TGF-β1-induced EMT requires enhanced levels of both integrin αvβ3 expression and FGFR1. Knockdown of β3 suppressed the enhancement by FGF1 of TGF-β1-induced EMT in MCF10A cells. Antagonists to FGFR suppressed the enhancing effect of FGF1 on EMT. Integrin-binding defective FGF1 mutant did not augment TGF-β1-induced EMT in MCF10A cells. These findings suggest that enhanced integrin αvβ3 expression in addition to enhanced FGFR1 expression is critical for FGF1 to augment TGF-β1-induced EMT in mammary epithelial cells.  相似文献   

11.
Cultured bovine aortic endothelial cells synthesize growth factors which markedly differ in the regulation of their storage and secretion. Endothelial cell lysates, but not conditioned medium, contain a growth factor activity that appears to be basic fibroblast growth factor (FGF) by the following criteria: (1) it elutes from heparin-Sepharose at 1.4-1.6 M NaCl; (2) it is mitogenic for bovine aortic and capillary endothelial cells; (3) it is heat sensitive but stable to dithiothreitol; (4) it has a molecular weight of about 18,000 daltons; and (5) it cross-reacts with antiserum directed against basic FGF. In contrast, endothelial cell conditioned medium, but not lysates, contains a growth factor activity that (1) elutes from heparin-Sepharose at 0.4-0.5 M NaCl; (2) is mitogenic for fibroblasts and vascular smooth muscle cells but not for capillary endothelial cells; (3) is heat stable and dithiothreitol sensitive; and (4) competes with platelet-derived growth factor (PDGF) for binding to fibroblasts. From these criteria, it appears that endothelial cells secrete into the medium growth factors some of which are PDGF-like, but secrete little if any basic FGF. It is suggested that endothelial cell-associated basic FGF acts in an autocrine fashion to stimulate endothelial cell proliferation in response to endothelial cell perturbation or injury. On the other hand, the endothelial cell-secreted growth factors which are smooth muscle cell but not endothelial cell mitogens might exert a paracrine function on neighboring cells of the vessel wall.  相似文献   

12.
Fibroblast growth factor-2 (FGF2) has been demonstrated to be a promising osteogenic factor for treating osteoporosis. Our earlier study shows that transplantation of mouse Sca-1(+) hematopoietic stem/progenitor cells that are engineered to express a modified FGF2 leads to considerable endosteal/trabecular bone formation, but it also induces adverse effects like hypocalemia and osteomalacia. Here we report that the use of an erythroid specific promoter, β-globin, leads to a 5-fold decrease in the ratio of serum FGF2 to the FGF2 expression in the marrow cavity when compared to the use of a ubiquitous promoter spleen focus-forming virus (SFFV). The confined FGF2 expression promotes considerable trabeculae bone formation in endosteum and does not yield anemia and osteomalacia. The avoidance of anemia in the mice that received Sca1(+) cells transduced with FGF2 driven by the β-globin promoter is likely due to attenuation of high-level serum FGF2-mediated stem cell mobilization observed in the SFFV-FGF2 animals. The prevention of osteomalacia is associated with substantially reduced serum Fgf23/hypophosphatemia, and less pronounced secondary hyperparathyroidism. Our improved stem cell gene therapy strategy represents one step closer to FGF2-based clinical therapy for systemic skeletal augmentation.  相似文献   

13.
研究发现在甘油诱导的小鼠肌肉损伤修复过程中可能存在肌间脂的沉积,而肌肉分泌因子(myokines)作为特殊的蛋白参与了肌肉与脂肪的多种生理过程.为研究肌肉内注射甘油后对肌间脂生成的影响,以及注射后肌肉分泌因子在肌肉损伤后修复及肌间脂沉积过程中的表达趋势,本文选用三月龄C57BL/6品系小鼠,右腿胫骨前肌注射50% HBSS(V/V)甘油,左腿胫骨前肌注射等量的HBSS缓冲液作为对照.取注射后不同时期小鼠的胫骨前肌,冰冻切片技术检测肌肉再生及肌间脂沉积状况,实时定量PCR检测各分泌因子(IL-6、IL-15、MSTN、FNDC5、FGF21、myonectin和Insl6)的mRNA表达变化,酶联免疫分析(ELISA)检测分泌因子的蛋白表达变化.结果表明,在甘油诱导的肌肉损伤再生修复过程中存在肌间脂的生成,同时IL-6、Insl6、FGF21和IL-15的mRNA相对表达量在肌肉损伤修复过程中的前、中期变化明显,而MSTN和myonectin的mRNA相对表达量则在中、后期变化明显. IL-6、Insl6的蛋白表达量在前、中期明显升高.综上所述,甘油注射可引起肌肉损伤修复,并在这一过程中伴随着肌间脂的沉积,而肌肉分泌因子作为肌肉与脂肪之间的信息交换因子可能参与了肌肉损伤后的再生修复以及肌间脂的形成.  相似文献   

14.
Platelet-rich plasma (PRP) has been widely used in clinical practice for more than 20 years because it causes the release of many growth factors. However, the burst release pattern and short release period of PRP have become obstacles to its application. An optimal controllable release system is an urgent need for researchers. This study investigated whether collagen/PRP (COL/PRP) scaffolds can serve as a vehicle for the controllable release of growth factors. We fabricated a novel scaffold that integrates PRP activated by thrombin or collagen into type I collagen. The mechanical properties, cytotoxicity, and transforming growth factor β1 (TGF-β1), platelet derived growth factor (PDGF), fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) content were evaluated. Our results demonstrate that the COL/PRP scaffolds were not cytotoxic to L-929 fibroblasts. The PDGF and FGF content in the thrombin group was at a higher level and lasted for a long period of time. Collagen and thrombin played the same role in the release of TGF-β1 and VEGF. These data suggest that the novel COL/PRP scaffolds provide a carrier for the controllable release of growth factors and may be used in tissue- regenerative therapies.  相似文献   

15.
16.
In our studies of the growth-promoting effect of a cytokine, interleukin-1 (IL-1), on cultured porcine granulosa cells, we found that the potency of IL-1 action correlated with the serum concentration in the culture medium and that IL-1 acted synergistically with insulin to increase the number of cells in the presence of low serum concentrations (0.1-1%). With granulosa cells maintained in a quiescent state under serum-free conditions, we therefore examined the effects of combined treatment with IL-1 and peptide growth factors, including insulin, on [3H]thymidine incorporation by these cells. IL-1 by itself enhanced [3H]thymidine incorporation in a concentration-dependent manner. Moreover, IL-1 acted synergistically with insulin, epidermal growth factor (EGF), or fibroblast growth factor (FGF) to enhance [3H]thymidine incorporation. Combinations of maximally effective concentrations of insulin (1 micrograms/ml), EGF (1 ng/ml), or FGF (50 ng/ml) with the maximally effective concentration of IL-1 (10 ng/ml) increased the levels of [3H]thymidine incorporation to 10-, 22-, and 20-fold, respectively, over the control values. Whereas IL-2 (0.1-100 ng/ml) did not affect [3H]thymidine incorporation, tumor necrosis factor alpha (TNF alpha) stimulated [3H]thymidine incorporation by itself and reproduced the actions of IL-1 to act synergistically with insulin, EGF, or FGF. When IL-1 and TNF alpha were added together in relatively low concentrations (1 ng/ml each), the combination had synergistic effects in enhancing [3H]thymidine incorporation. The present study demonstrates that cytokines and peptide growth factors act synergistically to markedly enhance porcine granulosa cell growth in vitro.  相似文献   

17.
Heparin inhibits skeletal muscle growth in vitro   总被引:3,自引:0,他引:3  
Heparin or heparan sulfate proteoglycan (HeSPG), but not chondroitin sulfate or hyaluronic acid, exerts a pronounced inhibitory effect on muscle growth in vitro, as determined by total protein, myosin accumulation or synthesis, and [3H]thymidine incorporation studies. Primary muscle fibroblast culture growth is also inhibited by heparin but to a substantially lesser degree compared to muscle (30% and over 90% inhibition of growth, respectively). Heparin-induced inhibition of skeletal muscle growth is a consequence of its interaction with a growth factor(s) present in the media used to support myogenesis; heparin-Sepharose column absorbed horse serum can support muscle growth only in the presence of added heparin-binding growth factors like fibroblast growth factor (FGF) or chicken muscle growth factor (CMGF). Furthermore, heparin prevents the binding of iodinated FGF to the myoblast surface. We also show that the extent of muscle growth is a function of the relative amounts of heparin and FGF in culture. Finally, we provide evidence indicating that FGF can combine with endogenously occurring heparin-like components: immobilized FGF binds sodium-[35S]sulfate labeled components secreted in muscle culture conditioned medium, an interaction inhibited by anti-HeSPG antibodies or heparin, but not by other sulfated glycosaminoglycans. Since heparin binding growth factors not only stimulate myoblast proliferation but also actively inhibit the onset of muscle differentiation (G. Spitzz, D. Roman, and A. Strauss (1986). J. Biol. Chem. 261, 9483-9488), their interaction with naturally occurring heparin-like components may be an important physiological mechanism for modulating muscle growth and differentiation in development and regeneration.  相似文献   

18.
Ras has been thought to be involved in neuronal differentiation of rat pheochromocytoma PC12 cells. PC12 cells are immature adrenal chromaffin-like cells which undergo differentiation to sympathetic neuron-like cells in response to nerve growth factor (NGF). Fibroblast growth factor (FGF) and interleukin (IL)-6 can also induce differentiation of PC12 cells. In this paper, we report that NGF, FGF, and IL-6 induce an accumulation of an active Ras.GTP complex. In the serum-starved culture of PC12 cells, 6% of the Ras protein was complexed with GTP. Upon stimulation with NGF, the percentage of Ras.GTP increased to 24% after 2 min, and the high level of Ras.GTP was maintained for at least 16 h. On the other hand, the activation of Ras by FGF and IL-6 showed distinct kinetics; about 3-fold increase of Ras.GTP was detected at 10 min, and afterward, the level returned to the basal level within 60 min. These observations provide direct evidence that activation of Ras is involved in signal transduction from these differentiation factors. In addition, it was found that growth factors, including epidermal growth factor, insulin, and insulin-like growth factor-I, and a tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA), can also activate Ras under the same conditions. A tyrosine kinase-specific inhibitor, genistein, inhibited the increase of Ras.GTP induced by NGF and other factors. On the other hand, down-regulation of protein kinase C (PKC) by prolonged treatment with TPA, which sufficiently blocked TPA-induced Ras activation, did not abolish the formation of Ras.GTP by NGF. These results suggest that tyrosine kinases rather than PKC play a major role in the NGF-induced activation of Ras in PC12 cells.  相似文献   

19.
Three fibroblast growth factor (FGF) molecules, FGF19, FGF21, and FGF23, form a unique subfamily that functions as endocrine hormones. FGF19 and FGF21 can regulate glucose, lipid, and energy metabolism, while FGF23 regulates phosphate homeostasis. The FGF receptors and co-receptors for these three FGF molecules have been identified, and domains important for receptor interaction and specificity determination are beginning to be elucidated. However, a number of questions remain unanswered, such as the identification of fibroblast growth factor receptor responsible for glucose regulation. Here, we have generated a variant of FGF23: FGF23-21c, where the C-terminal domain of FGF23 was replaced with the corresponding regions from FGF21. FGF23-21c showed a number of interesting and unexpected properties in vitro. In contrast to wild-type FGF23, FGF23-21c gained the ability to activate FGFR1c and FGFR2c in the presence of βKlotho and was able to stimulate glucose uptake into adipocytes in vitro and lower glucose levels in ob/ob diabetic mice model to similar extent as FGF21 in vivo. These results suggest that βKlotho/FGFR1c or FGFR2c receptor complexes are sufficient for glucose regulation. Interestingly, without the FGF23 C-terminal domain, FGF23-21c was still able to activate fibroblast growth factor receptors in the presence of αKlotho. This suggests not only that sequences outside of the C-terminal region may also contribute to the interaction with co-receptors but also that FGF23-21c may be able to regulate both glucose and phosphate metabolisms. This raises an interesting concept of designing an FGF molecule that may be able to address multiple diseases simultaneously. Further understanding of FGF/receptor interactions may allow the development of exciting opportunities for novel therapeutic discovery.  相似文献   

20.
Our studies show that in connective tissue cells, induction of PGE2 synthesis in response to IL-1 requires costimulation with platelet-derived growth factor (PDGF) or fibroblast growth factor (FGF). In cells incubated in medium containing fresh serum, IL-1 induced a dose-dependent synthesis of PGE2. However, when the cells were incubated in medium containing low serum or platelet poor plasma (lacking PDGF), IL-1 alone failed to induce PGE2 synthesis. PGE2 synthesis was restored when platelet poor plasma was supplemented with PDGF. Addition of PDGF or FGF together with IL-1 resulted in a 14- and 66-fold stimulation of PGE2 synthesis, respectively. Stimulation was dependent on the concentration of both IL-1 and the growth factor. PGE2 synthesis was also dependent on the synthesis of new proteins. In cells simultaneously treated with IL-1 and PDGF, PGE2 synthesis was initiated after a lag of 2 to 3 h, proceeded first with a rapid rate for 6 h, and then with a slower rate through 24 h. PGE2 synthesis during the latter, slower phase was greatly enhanced by pretreatment with PDGF, but not by pretreatment with IL-1. PDGF pretreatment also resulted in maintenance of 10- to 12-fold higher cell surface IL-1-binding during this phase. These data provide evidence for potentially novel interactions between PDGF and IL-1 activities, one of which is the modulation of IL-1 receptors by PDGF. Furthermore, these studies suggest that by virtue of their effect on IL-1 activities, PDGF and FGF may play additional roles in connective tissues, including an indirect role in inflammatory processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号