首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
2.
3.
Radiotherapy and chemotherapeutic agents that damage DNA are the current major non-surgical means of treating cancer. However, many patients develop resistances to chemotherapy drugs in their later lives. The PI3K and Ras signaling pathways are deregulated in most cancers, so molecularly targeting PI3K-Akt or Ras-MAPK signaling sensitizes many cancer types to radiotherapy and chemotherapy, but the underlying molecular mechanisms have yet to be determined. During the multi-step processes of tumorigenesis, cancer cells gain the capability to disrupt the cell cycle checkpoint and increase the activity of CDK4/6 by disrupting the PI3K, Ras, p53, and Rb signaling circuits. Recent advances have demonstrated that PI3K-Akt-mTOR signaling controls FANCD2 and ribonucleotide reductase (RNR). FANCD2 plays an important role in the resistance of cells to DNA damage agents and the activation of DNA damage checkpoints, while RNR is critical for the completion of DNA replication and repair in response to DNA damage and replication stress. Regulation of FANCD2 and RNR suggests that cancer cells depend on PI3K-Akt-mTOR signaling for survival in response to DNA damage, indicating that the PI3K-AktmTOR pathway promotes resistance to chemotherapy and radiotherapy by enhancing DNA damage repair.  相似文献   

4.
Pancreatic cancer has a high mortality rate due to the absence of early symptoms and subsequent late diagnosis; additionally, pancreatic cancer has a high resistance to radio- and chemotherapy. Multiple inflammatory pathways are involved in the pathophysiology of pancreatic cancer. Melatonin an indoleamine produced in the pineal gland mediated and receptor-independent action is the pancreas and other where has both receptors. Melatonin is a potent antioxidant and tissue protector against inflammation and oxidative stress. In vivo and in vitro studies have shown that melatonin supplementation is an appropriate therapeutic approach for pancreatic cancer. Melatonin may be an effective apoptosis inducer in cancer cells through regulation of a large number of molecular pathways including oxidative stress, heat shock proteins, and vascular endothelial growth factor. Limited clinical studies, however, have evaluated the role of melatonin in pancreatic cancer. This review summarizes what is known regarding the effects of melatonin on pancreatic cancer and the mechanisms involved.  相似文献   

5.
Colorectal cancer is one of the most common cancers among the elderly, which is also seen in the forms of hereditary syndromes occurring in younger individuals. Numerous studies have been conducted to understand the molecular and cellular pathobiology underlying colorectal cancer. These studies have found that cellular signaling pathways are at the core of colorectal cancer pathology. Because of this, new agents have been proposed as possible candidates to accompany routine therapy regimens. One of these agents is melatonin, a neuro-hormone known best for its essential role in upholding the circadian rhythm and orchestrating the many physiologic changes it accompanies. Melatonin is shown to be able to modulate many signaling pathways involved in many essential cell functions, which if deregulated cause an accelerated pace towards cancer. More so, melatonin is involved in the regulation of immune function, tumor microenvironment, and acts as an antioxidant agent. Many studies have focused on the beneficial effects of melatonin in colorectal cancers, such as induction of apoptosis, increased sensitivity to chemotherapy agents and radiotherapy, limiting cellular proliferation, migration, and invasion. The present review aims to illustrate the known significance of melatonin in colorectal cancer and to address possible clinical use.  相似文献   

6.
Breast cancer is the most prevalent cancer and one of the most important causes of death in women throughout the world. Breast cancer risk factors include smoking, alcohol consumption, personal and family history, hypertension, and hormone therapy, long-term use of nonsteroidal anti-inflammatory drugs and tobacco usage. Surgery, chemotherapy, radiotherapy, immunotherapy, and neoadjuvant therapy are the current means for breast cancer treatment. Despite hormonal agents and chemotherapy, which have beneficial effects on lowering breast cancer death rate, the reaction of different people to these treatments is still a challenging point. Melatonin (N-acetyl-5-methoxy tryptamine) is a methoxy indole compound that is mainly secreted by the pineal gland at night; it is as an antioxidant, anti-inflammatory, and oncostatic agent. On the basis of recent studies, melatonin has antitumor properties on different cancer types and it may suppress cancer development in vitro and as well as in animal models. It is suggested that melatonin inhibits the development of breast cancer by various mechanisms. This paper summarizes the roles of melatonin in breast cancer treatment from the aspect of its molecular actions.  相似文献   

7.
Free radicals and other reactive species are involved in normal ovarian physiology. However, they are also highly reactive with complex cellular molecules (proteins, lipids, and DNA) and alter their functions leading to oxidative stress. Oxidative damage may play a prominent role in the development of disorders that considerably influence female fertility. Melatonin, because of its amphiphilic nature that allows for crossing morphophysiological barriers, is an effective antioxidant for protecting macromolecules against oxidative stress caused by reactive species. The balance between reactive oxygen species and antioxidants within the follicle seems to be critical to the function of the oocyte and granulosa cells and evidence has accumulated showing that melatonin is involved in the protection of these cells. Melatonin appears to have varied functions at different stages of follicle development, oocyte maturation, and luteal stage. Melatonin concentration in the growing follicle may be an important factor in avoiding atresia, because melatonin in the follicular fluid reduces apoptosis of critical cells. Melatonin also has protective actions during oocyte maturation reducing intrafollicular oxidative damage. An association between melatonin concentrations in follicular fluid and oocyte quality has been reported; this would allow a preovulatory follicle to fully develop and provide a competent oocyte for fertilization. The functional role of reactive species and the cytoprotective properties of melatonin on the ovary from oxidative damage are summarized in this brief review.  相似文献   

8.
Ionizing radiation is classified as a potent carcinogen, and its injury to living cells is, to a large extent, due to oxidative stress. The molecule most often reported to be damaged by ionizing radiation is DNA. Hydroxyl radicals (*OH), considered the most damaging of all free radicals generated in organisms, are often responsible for DNA damage caused by ionizing radiation. Melatonin, N-acetyl-5-methoxytryptamine, is a well-known antioxidant that protects DNA, lipids, and proteins from free-radical damage. The indoleamine manifests its antioxidative properties by stimulating the activities of antioxidant enzymes and scavenging free radicals directly or indirectly. Among known antioxidants, melatonin is a highly effective scavenger of *OH. Melatonin is distributed ubiquitously in organisms and, as far as is known, in all cellular compartments, and it quickly passes through all biological membranes. The protective effects of melatonin against oxidative stress caused by ionizing radiation have been documented in in vitro and in vivo studies in different species and in in vitro experiments that used human tissues, as well as when melatonin was given to humans and then tissues collected and subjected to ionizing radiation. The radioprotective effects of melatonin against cellular damage caused by oxidative stress and its low toxicity make this molecule a potential supplement in the treatment or co-treatment in situations where the effects of ionizing radiation are to be minimized.  相似文献   

9.
10.
The complex process of carcinogenesis is, to a large extent, due to oxidative stress. Numerous indicators of oxidative damage are enhanced in the result of the action of carcinogens. Several antioxidants protect, with different efficacy, against oxidative abuse, exerted by carcinogens. Recently, melatonin (N-acetyl-5-methoxytryptamine) and some other indoleamines have gained particular meaning in the defense against oxidative stress and, consequently, carcinogenesis. Some antioxidants, like ascorbic acid, play a bivalent role in the antioxidative defense, revealing, under specific conditions, prooxidative effects. Among known antioxidants, melatonin is particularly frequently applied in experimental models of anticarcinogenic action. In the numerous studies, examining several parameters of oxidative damage and using several in vitro and in vivo models, this indoleamine has been shown to protect DNA and cellular membranes from the oxidative abuse caused by carcinogens. When either preventing or decreasing the oxidative damage to macromolecules, melatonin also protects against the initiation of cancer. The protection provided by melatonin and some other antioxidants against cellular damage, due to carcinogens, make them potential therapeutic supplements in the conditions of increased cancer risk.  相似文献   

11.
Nephrotoxicity is an adverse side effect of methotrexate (MTX) chemotherapy. The present study verifies whether melatonin, an endogenous antioxidant prevents MTX‐induced renal damage. Adult rats were administered 7 mg/kg body weight MTX intraperitoneally for 3 days. In the melatonin pretreated rats, 40 mg/ kg body weight melatonin was administered daily intraperitoneally 1 h before the administration of MTX. The rats were killed 12 h after the final dose of MTX/vehicle. The kidneys were used for light microscopic and biochemical studies. The markers of oxidative stress were measured along with the activities of the antioxidant enzymes and myeloperoxidase activity in the kidney homogenates. Pretreatment with melatonin reduced MTX induced renal damage both histologically and biochemically as revealed by normal plasma creatinine levels. Melatonin pretreatment reduced MTX induced oxidative stress, alteration in the activity of antioxidant enzymes as well as elevation in myeloperoxidase activity. The results suggest that melatonin has the potential to reduce MTX induced oxidative stress, neutrophil infiltration as well as renal damage. As melatonin is an endogenous antioxidant and is non‐toxic even in high doses it is suggested that melatonin may be beneficial in minimizing MTX induced renal damage in humans. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The process of regenerating liver is the result of a balance between stimulating factors and inhibitors of hepatocyte proliferation. Melatonin and its metabolites have been found to protect tissues against oxidative damage generated by a variety of toxic agents and metabolic processes. Furthermore, studies in liver of rats showed a decrease in the liver mitochondrial hydroxylation of drugs returning to the normal state after the administration of antioxidants. This study was designed to determine, in experimental animals, whether the administration of an antioxidant agent such as melatonin could prevent cells events leading to tissue injury and hepatic dysfunction after partial hepatectomy (PH). Biliary flow (BF), oxidative stress in hepatic tissue and Na+/K+ATPase activities in whole plasma membrane were determined. PH decreased the Na+/K+ATPase activity. PH significantly reduced the BF (36%) and promoted oxidative stress with an increase of lipoperoxidation and decrease of glutathione peroxidase and catalase activities. Treatment with melatonin prevented the decrease of BF in rats with hepatectomy and normalized the Na+/K+ATPase activity. Moreover, melatonin markedly attenuated oxidative stress produced by PH. This may be the results of the higher efficacy of melatonin in scavenging various free radicals and also because of its ability in stimulating the antioxidant enzymes. We suggest that oxidative stress before and during liver regeneration has a crucial role in cholestasis, apoptotic/necrotic hepatocellular damage and the impairment in liver transport function induced by PH and that melatonin could modulate the degree of oxidative stress and through it prevent the alterations in liver function carrier. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
14.
Melatonin is an endogenous indolamine, classically known as a light/dark regulator. Besides classical functions, melatonin has also showed to have a wide range of antitumoral effects in numerous cancer experimental models. However, no definite mechanism has been described to explain the whole range of antineoplasic effects. Here we describe a dual effect of melatonin on intracellular redox state in relation to its antiproliferative vs cytotoxic actions in cancer cells. Thus, inhibition of proliferation correlates with a decrease on intracellular reactive oxygen species (ROS) and increase of antioxidant defences (antioxidant enzymes and intracellular gluthation,GSH levels), while induction of cell death correlates with an increase on intracellular ROS and decrease of antioxidant defences. Moreover, cell death can be prevented by other well-known antioxidants or can be increased by hydrogen peroxide. Thus, tumour cell fate will depend on the ability of melatonin to induce either an antioxidant environment--related to the antiproliferative effect or a prooxidant environment related to the cytotoxic effect.  相似文献   

15.
Melatonin is a potent endogenous free radical scavenger, actions that are independent of its many receptor-mediated effects. In the last several years, hundreds of publications have confirmed that melatonin is a broad-spectrum antioxidant. Melatonin has been reported to scavenge hydrogen peroxide (H(2)O(2)), hydroxyl radical (HO(.)), nitric oxide (NO(.)), peroxynitrite anion (ONOO(-)), hypochlorous acid (HOCl), singlet oxygen ((1)O(2)), superoxide anion (O(2)(-).) and peroxyl radical (LOO(.)), although the validity of its ability to scavenge O(2)(-). and LOO(.) is debatable. Regardless of the radicals scavenged, melatonin prevents oxidative damage at the level of cells, tissues, organs and organisms. The antioxidative mechanisms of melatonin seem different from classical antioxidants such as vitamin C, vitamin E and glutathione. As electron donors, classical antioxidants undergo redox cycling; thus, they have the potential to promote oxidation as well as prevent it. Melatonin, as an electron-rich molecule, may interact with free radicals via an additive reaction to form several stable end-products which are excreted in the urine. Melatonin does not undergo redox cycling and, thus, does not promote oxidation as shown under a variety of experimental conditions. From this point of view, melatonin can be considered a suicidal or terminal antioxidant which distinguishes it from the opportunistic antioxidants. Interestingly, the ability of melatonin to scavenge free radicals is not in a ratio of mole to mole. Indeed, one melatonin molecule scavenges two HO. Also, its secondary and tertiary metabolites, for example, N(1)-acetyl-N(2)-formyl-5-methoxykynuramine, N-acetyl-5-methoxykynuramine and 6-hydroxymelatonin, which are believed to be generated when melatonin interacts with free radicals, are also regarded as effective free radical scavengers. The continuous free radical scavenging potential of the original molecule (melatonin) and its metabolites may be defined as a scavenging cascade reaction. Melatonin also synergizes with vitamin C, vitamin E and glutathione in the scavenging of free radicals. Melatonin has been detected in vegetables, fruits and a variety of herbs. In some plants, especially in flowers and seeds (the reproductive organs which are most vulnerable to oxidative insults), melatonin concentrations are several orders of magnitude higher than measured in the blood of vertebrates. Melatonin in plants not only provides an alternative exogenous source of melatonin for herbivores but also suggests that melatonin may be an important antioxidant in plants which protects them from a hostile environment that includes extreme heat, cold and pollution, all of which generate free radicals.  相似文献   

16.
The identification of cancer stem cells(CSCs) that are responsible for tumor initiation, growth, metastasis, and therapeutic resistance might lead to a new thinking on cancer treatments. Similar to stem cells,CSCs also display high resistance to radiotherapy and chemotherapy with genotoxic agents. Thus, conventional therapy may shrink the tumor volume but cannot eliminate cancer. Eradiation of CSCs represents a novel therapeutic strategy. CSCs possess a highly efficient DNA damage response(DDR) system, which is considered as a contributor to the resistance of these cells from exposures to DNA damaging agents. Targeting of enhanced DDR in CSCs is thus proposed to facilitate the eradication of CSCs by conventional therapeutics. To achieve this aim, a better understanding of the cellular responses to DNA damage in CSCs is needed. In addition to the protein kinases and enzymes that are involved in DDR, other processes that affect the DDR including chromatin remodeling should also be explored.  相似文献   

17.
Cytotoxic agents form the basis of most cancer therapies. These agents primarily affect rapidly proliferating cells, so their use incurs morbidity associated with damage to tissues such as bone marrow and gastrointestinal mucosa. Clinical outcome would be improved if it were possible to develop therapeutics with more specific activity against p53-deficient cancers, which account for over 50% of all cases. p53 deficiency alters the cellular response to DNA damage in that it leaves cells with attenuated DNA damage checkpoint controls and a reduced propensity for apoptotic cell death. Thus, the DNA repair capacity of these cells is reduced but survival is increased. This promotes genomic instability and contributes to the resistance of p53-deficient cells to cytotoxic agents. Disabling the residual G(2) checkpoint function of p53-deficient cells may favour cell death following DNA damage. Several potential strategies for G(2) checkpoint abrogation show promise for the specific sensitization of cancer cells. Here we detail how the G(2) DNA damage checkpoint is influenced by p53 status and how the loss of p53 function in cancer cells can be exploited to enhance the cytotoxicity of anti-cancer agents.  相似文献   

18.
Oxidative DNA damage is likely to be involved in the etiology of cancer and is thought to accelerate tumorigenesis via increased mutation rates. However, the majority of malignant cells acquire a specific type of genomic instability characterized by large-scale genomic rearrangements, referred to as chromosomal instability (CIN). The molecular mechanisms underlying CIN are not entirely understood. We utilized Saccharomyces cerevisiae as a model system to delineate the relationship between genotoxic stress and CIN. It was found that elevated levels of chronic, unrepaired oxidative DNA damage caused chromosomal aberrations at remarkably high frequencies under both selective and nonselective growth conditions. In this system, exceeding the cellular capacity to appropriately manage oxidative DNA damage resulted in a “gain-of-CIN” phenotype and led to profound karyotypic instability. These results illustrate a novel mechanism for genome destabilization that is likely to be relevant to human carcinogenesis.  相似文献   

19.
Reactive oxygen species (ROS)-induced genomic damage may have important consequences in the initiation and progression of cancer. Deregulated expression of the proto-oncogene c-MYC is associated with intracellular oxidative stress and increased DNA damage. However, the protective role of antioxidants such as Vitamin C against MYC-induced genomic damage has not been fully investigated. In a variety of cell lines, we show that ectopic MYC over-expression results in the elevation of intracellular ROS levels and a concomitant increase in oxidative DNA damage, as assessed by levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) in the genomic DNA. Loading cells with ascorbic acid (AA) relieved MYC-elicited intracellular oxidative stress and conferred genomic protection. A mitochondrially targeted Vitamin E analog, TPPB, also protected cells from MYC-elicited oxidative DNA damage, suggesting the involvement of mitochondria in increased ROS production. We found that deregulated MYC expression resulted in the attenuation of intracellular glutathione levels, which was reversed by loading cells with Vitamin C. Additionally, cells over-expressing MYC had elevated levels of intracellular superoxide, which was significantly quenched by Vitamin C or the selective superoxide quencher, Tiron. Consequently, Vitamin C and other antioxidants protected cells from MYC-induced cellular transformation. Our studies implicate a role for ROS, and superoxide in particular, in MYC-elicited oxidative DNA damage and cellular transformation, and point to a pharmacological role of antioxidants in cancer chemoprevention.  相似文献   

20.
Autophagy is a catabolic process involving lysosomal turnover of proteins and organelles for maintenance of cellular homeostasis and mitigation of metabolic stress. Autophagy defects are linked to diseases, such as liver failure, neurodegeneration, inflammatory bowel disease, aging and cancer. The role of autophagy in tumorigenesis is complex and likely context-dependent. Human breast, ovarian and prostate cancers have allelic deletions of the essential autophagy regulator BECN1 and Becn1(+/-) and other autophagy-deficient transgenic mice are tumor-prone, whereas tumors with constitutive Ras activation, including human pancreatic cancers, upregulate basal autophagy and are commonly addicted to this pathway for survival and growth; furthermore, autophagy suppression by Fip200 deletion compromises PyMT-induced mammary tumorigenesis. The double-edged sword function of autophagy in cancer has been attributed to both cell- and non-cell-autonomous mechanisms, as autophagy defects promote cancer progression in association with oxidative and ER stress, DNA damage accumulation, genomic instability and persistence of inflammation, while functional autophagy enables cancer cell survival under stress and likely contributes to treatment resistance. In this review, we will focus on the intimate link between autophagy and cancer cell metabolism, a topic of growing interest in recent years, which has been recognized as highly clinically relevant and has become the focus of intense investigation in translational cancer research. Many tumor-associated conditions, including intermittent oxygen and nutrient deprivation, oxidative stress, fast growth and cell death suppression, modulate, in parallel and in interconnected ways, both cellular metabolism and autophagy to enable cancer cells to rapidly adapt to environmental stressors, maintain uncontrolled proliferation and evade the toxic effects of radiation and/or chemotherapy. Elucidating the interplay between autophagy and tumor cell metabolism will provide unique opportunities to identify new therapeutic targets and develop synthetically lethal treatment strategies that preferentially target cancer cells, while sparing normal tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号