首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MicroRNAs (miRNAs) are small non-coding RNAs that participate in diverse biological processes including skeletal muscle development. MiR-214 is an miRNA that is differentially expressed in porcine embryonic muscle and adult skeletal muscle, suggesting that miR-214 may be related to embryonic myogenesis. In this study, the myoblast cell line C2C12 was used for functional analysis of miR-214 in vitro. The results showed that miR-214 was expressed both in myoblasts and in myotubes and was upregulated during differentiation. After treatment with an miR-214 inhibitor and culturing in differentiation medium, myoblast differentiation was repressed, as indicated by the significant downregulation of expression of the myogenic markers myogenin and myosin heavy chain (MyHC). Interestingly, myoblast proliferation was also repressed when cells were transfected with an miR-214 inhibitor and cultured in growth medium by real-time proliferation assay and cell cycle analysis. Our results showed that miR-214 regulates both proliferation and differentiation of myoblasts depending on the conditions.  相似文献   

2.
MiR-206 was involved in a series of cellular activities, such as the growth and development of skeletal muscle and the tumorigenesis. MiR-206 was characterized previously as a differentially expressed gene in sodium arsenite (SA)-induced neural tube defects (NTDs) in chick embryos via miRNA microarray analysis. However, the role of miR-206 in the pathological process of nerve cells remained elusive. In this study we found differential expression of miR-206 in SA-treated chick embryos by Northern blot analysis. Ectopic expression of miR-206 inhibited cell proliferation, and promoted cell apoptosis in U343 and SK-N-SH cell by using MTT, Edu Apollo assay and Flow cytometry analysis. Further investigation revealed that miR-206 can interact with 3'-untranslated region (UTR) of Otx2. MiR-206 mimics down-regulated the endogeneous Otx2 expression, whereas the miR-206 inhibitor obviously up-regulated the expression of Otx2. These findings indicate that overexpression of miR-206 promotes cell apoptosis and low expression of miR-206 inhibits cell apoptosis. Otx2 may play an important role in the process of miR-206-mediated cell apoptosis.  相似文献   

3.
The human GDD1/TMEM16E gene has been found to be mutated in gnathodiaphyseal dysplasia, an unusual skeletal syndrome with autosomal dominant inheritance. The molecular and biochemical function(s) of GDD1 protein has not yet been elucidated. In this study, we examined the murine GDD1 gene expression pattern during embryonic development, and characterized the cellular and tissue localizations of its gene product using a GDD1-specific antibody. In the developing embryos, GDD1 mRNA expression was principally associated with differentiating and developing somites, with a highly complex spatiotemporal pattern that involved the myotomal and sclerotomal lineages of somites. Biochemical studies indicated that GDD1 protein is an integral membrane glycoprotein that resides predominantly in intracellular vesicles. Immunohistochemical analysis showed a high level of murine GDD1 protein expression in cardiac and skeletal muscle tissues, and in growth-plate chondrocytes and osteoblasts in bone. These observations suggest diverse cellular role(s) of GDD1 in the development of musculoskeletal system.  相似文献   

4.
Yan X  Ding L  Li Y  Zhang X  Liang Y  Sun X  Teng CB 《PloS one》2012,7(1):e30925
The common carp is one of the most important cultivated species in the world of freshwater aquaculture. The cultivation of this species is particularly productive due to its high skeletal muscle mass; however, the molecular mechanisms of skeletal muscle development in the common carp remain unknown. It has been shown that a class of non-coding ~22 nucleotide RNAs called microRNAs (miRNAs) play important roles in vertebrate development. They regulate gene expression through sequence-specific interactions with the 3' untranslated regions (UTRs) of target mRNAs and thereby cause translational repression or mRNA destabilization. Intriguingly, the role of miRNAs in the skeletal muscle development of the common carp remains unknown. In this study, a small-RNA cDNA library was constructed from the skeletal muscle of the common carp, and Solexa sequencing technology was used to perform high throughput sequencing of the library. Subsequent bioinformatics analysis identified 188 conserved miRNAs and 7 novel miRNAs in the carp skeletal muscle. The miRNA expression profiling showed that, miR-1, miR-133a-3p, and miR-206 were specifically expressed in muscle-containing organs, and that miR-1, miR-21, miR-26a, miR-27a, miR-133a-3p, miR-206, miR-214 and miR-222 were differentially expressed in the process of skeletal muscle development of the common carp. This study provides a first identification and profiling of miRNAs related to the muscle biology of the common carp. Their identification could provide clues leading towards a better understanding of the molecular mechanisms of carp skeletal muscle development.  相似文献   

5.
6.
To investigate the role of miR-27b in sheep skeletal muscle development, here we first cloned the sequence of sheep pre-miR-27b, then further investigated its expression pattern in sheep skeletal muscle in vivo, the relationship of miR-27b expression and sheep skeletal muscle satellite cell proliferation and differentiation in vitro, and then finally confirmed its target gene during this development process. MiR-27b sequence, especially its mature sequence, was conservative among different species. MiR-27b highly expressed in sheep skeletal muscle than other tissues. In skeletal muscle of Suffolk and Bashbay sheep, miR-27b was upregulated during foetal period and downregulated during postnatal period significantly (\(P{<}0.01\)), but it still kept a relatively higher expression level in skeletal muscle of postnatal Suffolk sheep than Bashbay. There is a potential target site of miR-27b on \(3^\prime \)-UTR of sheep myostatin (MSTN) mRNA, and the double luciferase reporter assay proved that miR-27b could successfully bind on this site. When sheep satellite cells were in the proliferation status, miR-27b was upregulated and MSTN was downregulated significantly (\(P{<}0.01\)). When miR-27b mimics was transfected into sheep satellite cells, the cell proliferation was promoted and the protein level of MSTN was significantly downregulated (\(P{<}0.01\)). Moreover, miR-27b regulated its target gene MSTN by translation repression at an early step, and followed by inducing mRNA degradation in sheep satellite cells. Based on these results, we confirm that miR-27b could promote sheep skeletal muscle satellite cell proliferation by targeting MSTN and suppressing its expression.  相似文献   

7.
为了解翘嘴鳜miR-222的时空表达规律, 研究利用实时荧光定量PCR的方法检测miR-222在翘嘴鳜不同组织、胚胎发育及胚后发育中的相对表达丰度。研究结果显示, miR-222在肌肉相关的组织中表达较高, 特别是在成年翘嘴鳜的白肌中表达最高; 胚胎发育阶段结果显示, miR-222在胚胎发育的2细胞期就有表达, 而表达量在心动期达到最高。不同组织及不同发育阶段的差异性表达结果表明, miR-222很可能参与调控鳜鱼肌肉的生长发育。为研究合成代谢过程中miR-222在肌肉生长调控中的表达规律, 通过对翘嘴鳜幼鱼在饥饿一周后饱食一餐的实验处理下, 利用实时荧光定量的方法测定miR-222在骨骼肌中的相对表达变化。结果显示, miR-222的表达量在恢复喂食后的1h显著上升(P0.05), 表明miR-222很可能是调节鱼类骨骼肌生长过程中, 参与快速应答信号系统的一类miRNA。研究为miR-222在鱼类发育中的调控作用提供一些理论依据。    相似文献   

8.
越来越多的研究表明microRNA广泛参与骨代谢的调控,调节骨髓间充质干细胞、成骨及破骨细胞的增殖及分化,调控骨形成与骨吸收之间的平衡,在维持骨代谢平衡中发挥重要作用。近年来有研究报道老年性骨质疏松、绝经后骨质疏松均与miR-214的高表达有关。miR-214通过靶向作用于Osterix、ATF-4、FGFR1、Pten以及LZTS1等基因调控骨髓间充质干细胞、成骨细胞以及破骨细胞等骨组织细胞的增殖及分化,进而抑制骨形成,促进骨吸收。本文主要综述了miR-214对骨髓间充质干细胞、成骨细胞以及破骨细胞分化的调控作用,旨在探讨miR-214对骨形成的抑制作用,为骨质疏松等骨疾病的诊断及治疗提供理论依据。  相似文献   

9.
10.
近年来,研究者在肿瘤发生发展的相关研究中发现,microRNA-664(miR-664)很可能是一个在肿瘤发展进程中发挥重要作用的miRNA。和肿瘤周围的正常组织相比,在不同的肿瘤组织中,miR-664的表达水平有些出现升高,有些出现降低,因此,其在不同肿瘤中发挥的生物学功能也不尽相同。相关研究证实,miR-664可影响细胞的增殖、周期调控、再生等过程,而其在代谢、凋亡和自噬等生物学功能中发挥何种作用仍需进一步深入探究。更加系统的深入研究miR-664将有助于发掘其在基因靶向诊断与治疗领域中的应用。  相似文献   

11.
MicroRNA-214 (MiR-214) is aberrantly expressed in several human tumors such as ovarian cancer and breast cancer. However, the role of miR-214 in nasopharyngeal carcinoma (NPC) is still unknown. In this study, we report that miR-214 was overexpressed in NPC cell lines and tissues. Silencing of miR-214 by LNA-antimiR-214 in NPC cells resulted in promoting apoptosis and suppressing cell proliferation in vitro, and suppressed tumor growth in nude mice in vivo. Luciferase reporter assay was performed to identify Bim as a direct target of miR-214. Furthermore, this study showed that low Bim expression in NPC tissues correlated with poor survival of NPC patients. Taken together, our findings suggest that miR-214 plays an important role in NPC carcinogenesis.  相似文献   

12.
Pannexin 3 (PANX3) is a member of the pannexin family of single membrane channel-forming glycoproteins. Originally thought to have a limited localization in cartilage, bone, and skin, PANX3 has now been detected in a variety of other tissues including skeletal muscle, mammary glands, the male reproductive tract, the cochlea, blood vessels, small intestines, teeth, and the vomeronasal organ. In many cell types of the musculoskeletal system, such as osteoblasts, chondrocytes, and odontoblasts, PANX3 has been shown to regulate the balance of proliferation and differentiation. PANX3 can be induced during progenitor cell differentiation, functioning at the cell surface as a conduit for ATP and/or in the endoplasmic reticulum as a calcium leak channel. Evidence in osteoblasts and monocytes also highlight a role for PANX3 in purinergic signalling through its function as an ATP release channel. PANX3 is critical in the development and ageing of bone and cartilage, with its levels temporally regulated in other tissues such as skeletal muscle, skin, and the cochlea. In diseases such as osteoarthritis and intervertebral disc degeneration, PANX3 can have either protective or detrimental roles depending on if the disease is age-related or injury-induced. This review will discuss PANX3 function in tissue growth and regeneration, its role in cellular differentiation, and how it becomes dysregulated in disease conditions such as obesity, Duchenne’s muscular dystrophy, osteosarcoma, and non-melanoma skin cancer, where most of the findings on PANX3 function can be attributed to the characterization of Panx3 KO mouse models.  相似文献   

13.
Noncoding RNAs, including miRNAs (microRNAs) and circRNAs (circular RNA), are crucial regulators of myoblast proliferation and differentiation during muscle development. However, the specific roles and molecular mechanisms of circRNAs in muscle development remain poorly understood. Based on the existing circRNA-miRNA-mRNA network, our study focuses on circUBE3C, exploring its differential expression in fetal and adult muscle tissue of the cattle and investigating its impact on myoblast proliferation, apoptosis, and differentiation. The functional analysis of overexpression plasmids and siRNAs (small interfering RNAs) targeting circUBE3C was comprehensively evaluated by employing an array of advanced assays, encompassing CCK-8 (cell counting kit-8), EdU (5-ethynyl-20-deoxyuridine), flow cytometry, western blot analysis, and RT-qPCR. In vivo investigations indicated that overexpression of circUBE3C impedes the process of skeletal muscle regeneration. Mechanistically, we demonstrated that circUBE3C interacts with miR-191 and alleviates the suppression of p27 through cytoplasmic separation, bioinformatics prediction, dual-luciferase reporter assay, and RIP (RNA immunoprecipitation). Our findings indicate that the novel circRNA circUBE3C competitively binds to miR-191, thereby inhibiting proliferation and promoting apoptosis in bovine primary myoblasts and unveiling a regulatory pathway in bovine skeletal muscle development. These findings expand our understanding of circRNA functions in mammals and provide a basis for further exploration of their role in myogenesis and muscle diseases.  相似文献   

14.
MicroRNAs (miRNAs) are small endogenous conserved RNAs regulating genes expression through base pairing with the 3′-untranslated region (3′-UTR) of target messenger RNAs. MiR-214-5p is a newly identified miRNA with its biological role largely unknown. In this study, we explored miR-214-5p expression status in 78 paired tumor and nontumor tissues obtained from patients with hepatocellular carcinoma (HCC) by RT-qPCR. The effects of miR-214-5p expression on HCC cell proliferation, cell cycle progression, and cell migration were measured by CCK-8 assay, flow cytometry, and wound-healing assay. A dual-luciferase activity assay was performed to identify whether KLF5 was a target of miR-214-5p. Kaplan-Meier curve and log-rank test were used to investigate the effects of miR-214-5p and KLF5 on overall survival and disease-free survival of patients with HCC. We found miR-214-5p expression was sharply reduced in HCC tissues and cell lines compared with the normal tissues and cell lines. Functional assay revealed that miR-214-5p overexpression could downregulate cell proliferation, cell migration, and arrested cell cycle at G0/G1 phase. Further, we validated Krüppel-like factor 5 (KLF5) as a direct target of miR-214-5p, and was upregulated in HCC and inversely correlated with the expression of miR-214-5p. Moreover, we found the low expression of miR-214-5p and high expression of KLF5 were correlated with tumor size, tumor stage, and poorer 5-year overall survival and disease-free survival of patients with HCC. In conclusion, our results suggested miR-214-5p functions as a tumor suppressor through targeting KLF5 in HCC. Also, miR-214-5p and KLF5 were identified as potential prognostic markers and might be therapeutic targets in HCC.  相似文献   

15.
16.
Skeletal muscle possesses a remarkable regenerative capacity that relies on the activity of muscle stem cells, also known as satellite cells. The presence of non-myogenic cells also plays a key role in the coordination of skeletal muscle regeneration. Particularly, fibro-adipogenic progenitors (FAPs) emerged as master regulators of muscle stem cell function and skeletal muscle regeneration. This population of muscle resident mesenchymal stromal cells has been initially characterized based on its bi-potent ability to differentiate into fibroblasts or adipocytes. New technologies such as single-cell RNAseq revealed the cellular heterogeneity of FAPs and their complex regulatory network during muscle regeneration. In acute injury, FAPs rapidly enter the cell cycle and secrete trophic factors that support the myogenic activity of muscle stem cells. Conversely, deregulation of FAP cell activity is associated with the accumulation of fibrofatty tissue in pathological conditions such as muscular dystrophies and ageing. Considering their central role in skeletal muscle pathophysiology, the regulatory mechanisms of FAPs and their cellular and molecular crosstalk with muscle stem cells are highly investigated in the field. In this review, we summarize the current knowledge on FAP cell characteristics, heterogeneity and the cellular crosstalk during skeletal muscle homeostasis and regeneration. We further describe their role in muscular disorders, as well as different therapeutic strategies targeting these cells to restore muscle regeneration.  相似文献   

17.
MicroRNA-27a promotes myoblast proliferation by targeting myostatin   总被引:1,自引:0,他引:1  
MicroRNAs (miRNAs) are a class of endogenous non-coding RNAs that play critical roles in skeletal muscle development as well as in regulation of muscle cell proliferation and differentiation. However, the role of miRNAs in myoblast proliferation remains poorly understood. Here we found that the expression of miR-27a was increased during proliferation of C2C12 myoblasts. Moreover, overexpression of miR-27a in C2C12 cells promoted myoblast proliferation by reducing the expression of myostatin, a critical inhibitor of skeletal myogenesis. In addition, the miR-27a was confirmed to target myostatin 3'UTR by a luciferase reporter analysis. Together, these results suggest that miR-27a promotes myoblast proliferation through targeting myostatin.  相似文献   

18.
MiR-210 is up-regulated in multiple cancer types but its function is disputable and further investigation is necessary. Using a bioinformatics approach, we identified the putative target genes of miR-210 in hypoxia-induced CNE cells from genome-wide scale. Two functional gene groups related to cell cycle and RNA processing were recognized as the major targets of miR-210. Here, we investigated the molecular mechanism and biological consequence of miR-210 in cell cycle regulation, particularly mitosis. Hypoxia-induced up-regulation of miR-210 was highly correlated with the down-regulation of a group of mitosis-related genes, including Plk1, Cdc25B, Cyclin F, Bub1B and Fam83D. MiR-210 suppressed the expression of these genes by directly targeting their 3′-UTRs. Over-expression of exogenous miR-210 disturbed mitotic progression and caused aberrant mitosis. Furthermore, miR-210 mimic with pharmacological doses reduced tumor formation in a mouse metastatic tumor model. Taken together, these results implicate that miR-210 disturbs mitosis through targeting multi-genes involved in mitotic progression, which may contribute to its inhibitory role on tumor formation.  相似文献   

19.
Long non-coding RNAs (lncRNAs) are involved in the progression of several diseases. The interactions among lncRNAs, microRNA (miRNAs) or their targeting genes are reported to play crucial roles in the development of diseases. LINC00657 is observed to be upregulated in several cancers. However, the biological role of LINC00657 in neuropathic pain progress is unclear. Hence, in our study, we aimed to investigate the function of LINC00657 in neuropathic pain development. A chronic constriction injury (CCI) rat model was established, and we found that LINC00657 was greatly increased in CCI rats associated with a decrease of miR-136. Inhibition of LINC00657 suppressed neuropathic pain via alleviating mechanical and thermal hyperalgesia. In addition, miR-136 overexpression can also inhibit the neuropathic pain development. MiR-136 was predicted to serve as a miRNA target of LINC00657, and dual-luciferase reporter assay confirmed the correlation between LINC00657 and miR-136. Moreover, we observed that the decrease of LINC00657 was able to inhibit the neuroinflammation of CCI rats by targeting expression of cyclooxygenase-2, tumor necrosis factor-α and interleukin-1β while miR-136 inhibitors reversed this phenomenon. Next, by using bioinformatics analysis, ZEB1 was predicted as a direct target of miR-136, and miR-136 could negatively modulate ZEB1 expression. Besides these, ZEB1 was remarkably increased in the CCI rats. Knockdown of ZEB1 can inhibit neuropathic pain development, while miR-136 inhibitors can reverse it. In conclusion, it was implied that LINC00657 can induce the neuropathic pain development via regulating miR-136/ZEB1 axis.  相似文献   

20.
Studies have shown that long non-coding RNA (lncRNA) MEG3 plays a key role in osteoporosis (OP), but its regulatory mechanism is somewhat incompletely clear. Here, we intend to probe into the mechanism of MEG3 on OP development by modulating microRNA-214 (miR-214) and thioredoxin-interacting protein (TXNIP). Rat models of OP were established. MEG3, miR-214 and TXNIP mRNA expression in rat femoral tissues were detected, along with TXNIP, OPG and RANKL protein expression. BMD, BV/TV, Tb.N and Tb.Th in tissue samples were measured. Ca, P and ALP contents in rat serum were also determined. Primary osteoblasts were isolated and cultured. Viability, COL-I, COL-II and COL-Χ mRNA expression, PCNA, cyclin D1, OCN, RUNX2 and osteolix protein expresion, ALP content and activity, and mineralized nodule area of rat osteoblasts were further detected. Dual-luciferase reporter gene and RNA-pull down assays verified the targeting relationship between MEG3, miR-214 and TXNIP. MEG3 and TXNIP were up-regulated while miR-214 was down-regulated in femoral tissues of OP rats. MEG3 silencing and miR-214 overexpression increased BMD, BV/TV, Tb.N, Tb.Th, trabecular bone area, collagen area and OPG expression, and down-regulated RANKL of femoral tissues in OP rats. MEG3 silencing and miR-214 overexpression elevated Ca and P and reduced ALP in OP rat serum, elevated osteoblast viability, differentiation ability, COL-I and COL-Χ expression and ALP activity, and reduced COL-II expression of osteoblasts. MEG3 specifically bound to miR-214 to regulate TXNIP. MEG3 silencing and miR-214 overexpression promote proliferation and differentiation of osteoblasts in OP by down-regulating TXNIP, which further improves OP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号