首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Microparticles (MPs) are membrane fragments shed by cells activated by a variety of stimuli including serine proteases, inflammatory cytokines, growth factors, and stress inducers. MPs originating from platelets, leukocytes, endothelial cells, and erythrocytes are found in circulating blood at relative concentrations determined by the pathophysiological context. The procoagulant activity of MPs is their most characterized property as a determinant of thrombosis in various vascular and systemic diseases including myocardial infarction and diabetes. An increase in circulating MPs has also been associated with ischemic cerebrovascular accidents, transient ischemic attacks, multiple sclerosis, and cerebral malaria. Recent data indicate that besides their procoagulant components and identity antigens, MPs bear a number of bioactive effectors that can be disseminated, exchanged, and transferred via MPs cell interactions. Furthermore, as activated parenchymal cells may also shed MPs carrying identity antigens and biomolecules, MPs are now emerging as new messengers/biomarkers from a specific tissue undergoing activation or damage. Thus, detection of MPs of neurovascular origin in biological fluids such as CSF or tears, and even in circulating blood in case of blood–brain barrier leakage, would not only improve our comprehension of neurovascular pathophysiology, but may also constitute a powerful tool as a biomarker in disease prediction, diagnosis, prognosis, and follow-up.  相似文献   

2.
Cardiovascular diseases remain an important cause of morbi-mortality. Atherosclerosis, which predisposes to cardiovascular disorders such as myocardial infarction and stroke, develops silently over several decades. Identification of circulating biomarkers to evaluate cardiovascular event risk and pathology prognosis is of particular importance. Microparticles (MPs) are small vesicles released from cells upon apoptosis or activation. Microparticles are present in blood of healthy individuals. Studies showing a modification of their concentrations in patients with cardiovascular risk factors and after cardiovascular events identify MPs as potential biomarkers of disease. Moreover, the pathophysiological properties of MPs may contribute to atherosclerosis development. In addition, pharmacological compounds, used in the treatment of cardiovascular disease, can reduce plasma MP concentrations. Nevertheless, numerous issues remain to be solved before MP measurement can be applied as routine biological tests to improve cardiovascular risk prediction. In particular, prospective studies to identify the predictive values of MPs in pathologies such as cardiovascular diseases are needed to demonstrate whether MPs are useful biomarkers for the early detection of the disease and its progression.  相似文献   

3.
For determining the implications of circulating endothelial progenitor cells (cEPCs) and cellular membrane microparticles (MPs) in diabetic stroke, levels of EPCs, EPC-MPs, and endothelium-derived MPs (EMPs) and their correlations with blood glucose concentration, cerebral microvascular density (cMVD), and ischemic damage were investigated in type 2 diabetic db/db and db/+ (wild-type control) mice. Therapeutic efficacy of EPC infusion (preincubated with MPs) was also explored. Ischemic stroke was induced by middle cerebral artery occlusion (MCAO) surgery. Ischemic damage and cMVD were determined using histological analyses. The levels of cEPCs and MPs were determined using flow cytometric analyses. EPC generation and functions were evaluated by in vitro cell cultures. Results showed the following. 1) In db/db mice, the basal level of cEPCs was less and cMVDs were lower, but the levels of circulating EPC-MPs and EMPs were more; 2) MCAO induced a larger infarct volume and less of an increase in cEPCs in db/db mice; 3) the level of cEPCs correlated with blood glucose concentration (negatively), cMVD (positively), and ischemic damage (negatively), but the levels of EPC-MPs and EMPs correlated inversely with those parameters; 4) EPCs were reduced and dysfunctional in db/db mice, and preincubation with db/db MPs impaired EPC functions; and 5) infusion of EPCs preincubated with db/+ MPs increased the level of cEPCs and reduced ischemic damage, and these beneficial effects were reduced or lost in EPCs preincubated with db/db MPs. These data suggest that reduced cEPCs, impaired EPC generation/function, and increased production of MPs might be the mechanisms responsible for increased ischemic damage seen in db/db mice.  相似文献   

4.
血管内皮细胞微粒研究进展   总被引:1,自引:0,他引:1  
古秀雯  刘伟  毛恩强 《生命科学》2008,20(4):641-645
内皮细胞微粒(endothelial microparticle,EMPs)是内皮细胞活化或凋亡时,从其表面释放的小囊泡,其作为反映内皮细胞功能的新标记物,在炎症反应、心血管疾病和糖尿病等多种疾病中都有所增加。本文就EMP可能的形成机制、组成成分和主要作用作一概述。  相似文献   

5.
Jin M  Drwal G  Bourgeois T  Saltz J  Wu HM 《Proteomics》2005,5(7):1940-1952
Plasma microparticles (MPs) are spherical cell membrane fragments derived from either apoptotic or activated cells. Characterized by a rich phospholipid moiety and many protein constituents, MPs normally circulate in the blood and contribute to numerous physiological processes. In disease states, MPs derived from the injured organ likely contain valuable markers for determining the site, type, and extent of disease pathology. However, the basic protein characteristics of plasma MPs have yet to be described. In this study, MPs from a pooled plasma sample derived from 16 healthy donors, all of group A blood type, were prepared by ultracentrifugation. Flow cytometry confirmed that a majority of these MPs are smaller than 1 microm. Factor Xa generation assay revealed the presence of tissue factor activity in these MPs, confirming MPs' role in initiating blood coagulation. The MP proteome was analyzed by two-dimensional (2-D) gel electrophoresis performed in triplicate, and compared with a 2-D gel of pooled whole plasma and blood platelets. Overall, plasma MPs displayed distinct protein features and a greater number of protein spots (1021-1055) than that detected in whole plasma (331-370). Protein spots expressed in high abundance in the MP proteome were then excised and submitted for protein identity determination. This process provided protein identification for 169 protein spots and reported their relative protein quantities within the MP proteome. These 169 protein spots represented 83 different proteins and their respective isoforms. Thirty of these proteins have never before been reported in previous proteome analyses of human plasma. These results provide unprecedented information on the MP proteome and create a basis for future studies to understand MP biology and pathophysiology.  相似文献   

6.
Circulatory hypoxia‐related diseases (CHRDs), including acute coronary syndromes, stroke and organ transplantation, attract increased attention due to high morbidity and mortality. Mounting evidence shows that hypoxia‐induced oxidative stress, coagulation, inflammation and angiogenesis play extremely important roles in the physiological and pathological processes of CHRD‐related vascular endothelial injury. Interestingly, hypoxia, even hypoxia‐induced oxidative stress, coagulation and inflammation can all induce release of endothelial microparticles (EMPs). EMPs, shed from activated or apoptotic endothelial cells (ECs), reflect the degree of EC damage, and elevated EMP levels are found in several CHRDs. Furthermore, EMPs, which play an important role in cell‐to‐cell communication and function, have confirmed pro‐coagulant, proinflammatory, angiogenic and other functions, affecting pathological processes. These findings suggest that EMPs and CHRDs have a very close relationship, and EMPs may help to identify CHRD phenotypes and stratify the severity of disease, to improve risk stratification for developing CHRDs, to better define prophylactic strategies and to ameliorate prognostic characterization of patients with CHRDs. This review summarizes the known and potential roles of EMPs in the diagnosis, staging, treatment and clinical prognosis of CHRDs.  相似文献   

7.
Endothelial microparticles in diseases   总被引:2,自引:0,他引:2  
Microparticles are submicron vesicles shed from plasma membranes in response to cell activation, injury, and/or apoptosis. The measurement of the phospholipid content (mainly phosphatidylserine; PSer) of microparticles and the detection of proteins specific for the cells from which they are derived has allowed their quantification and characterization. Microparticles of various cellular origin (platelets, leukocytes, endothelial cells) are found in the plasma of healthy subjects, and their amount increases under pathological conditions. Endothelial microparticles (EMP) not only constitute an emerging marker of endothelial dysfunction, but are also considered to play a major biological role in inflammation, vascular injury, angiogenesis, and thrombosis. Although the mechanisms leading to their in vivo formation remain obscure, the release of EMP from cultured cells can be caused in vitro by a number of cytokines and apoptotic stimuli. Recent studies indicate that EMP are able to decrease nitric-oxide-dependent vasodilation, increase arterial stiffness, promote inflammation, and initiate thrombosis at their PSer-rich membrane, which highly co-expresses tissue factor. EMP are known to be elevated in acute coronary syndromes, in severe hypertension with end organ damage, and in thrombotic thrombocytopenic purpura, all conditions associated with endothelial injury and pro-thrombotic state. The release of EMP has also been associated with endothelial dysfunction of patients with multiple sclerosis and lupus anticoagulant. More recent studies have focused on the role of low shear stress leading to endothelial cell apoptosis and subsequent EMP release in end-stage renal disease. Improved knowledge of EMP composition, their biological effects, and the mechanisms leading to their clearance will probably open new therapeutic approaches in the treatment of atherothrombosis. This work was supported by a grant from the Agence Nationale de la Recherche (Projet MIPRA-Met, ANR-05-PCOD-24–01).  相似文献   

8.
Preeclampsia (PE) is a syndrome characterized by poor placentation and endothelial dysfunction. The diagnosis for this syndrome is based in hypertension and proteinuria presented after the 20th week of pregnancy. Despite intensive research, PE is still one of the leading causes of maternal mortality, although reliable screening tests or effective treatments of this disease have yet to be proposed. Microparticles (MPs) are small vesicles released after cell activation or apoptosis, which contain membrane proteins that are characteristic of the original parent cell. MPs have been proven to play key role in thrombosis, inflammation, and angiogenesis, as well as to mediate cell–cell communication by transferring mRNAs and microRNA from the cell of origin to target cells. Placenta-derived syncytiotrophoblast MPs are one of the most increased MPs during PE and may play an important role in the pathogenesis of this syndrome. Therefore, a better overall understanding of the role of MPs in PE may be useful for new clinical diagnoses and therapeutic approaches.  相似文献   

9.
Chronic diseases pose a severe burden to modern National Health Systems. Individuals nowadays have a far more extended lifespan than in the past, but healthy living was only scantily extended. As much as longer life is desirable, it is saddened by chronic diseases and organ malfunctions. One contributor to these problems was recognized to be represented by microparticles (MPs). Our purpose is to better understand MPs, to contrast their ominous threat and possible clinical importance. For this intent we correlated MPs with thrombotic pathologies, hemophilia, malaria, diabetes, cardiovascular diseases, endothelial dysfunctions, pulmonary hypertension, ischemic stroke, pre-eclampsia, rheumatologic diseases-rheumatoid arthritis, polymyositis-dermatomyositis, angiogenesis and tumor progression-cancer; we listed the possibilities of using them to improve transfusion methods, as a marker for acute allograft rejection, in stem cell transplantation, as neuronal biomarkers, to understand gender-specific susceptibility for diseases and to improve vaccination methods and we presented some methods for the detection of MPs.  相似文献   

10.
Tightly associated with blood vessels in their perivascular niche, human mesenchymal stem cells (MSCs) closely interact with endothelial cells (ECs). MSCs also home to tumours and interact with cancer cells (CCs). Microparticles (MPs) are cell‐derived vesicles released into the extracellular environment along with secreted factors. MPs are capable of intercellular signalling and, as biomolecular shuttles, transfer proteins and RNA from one cell to another. Here, we characterize interactions among ECs, CCs and MSCs via MPs and secreted factors in vitro. MPs and non‐MP secreted factors (Sup) were isolated from serum‐free medium conditioned by human microvascular ECs (HMEC‐1) or by the CC line HT1080. Fluorescently labelled MPs were prepared from cells treated with membrane dyes, and cytosolic GFP‐containing MPs were isolated from cells transduced with CMV‐GFP lentivirus. MSCs were treated with MPs, Sup, or vehicle controls, and analysed for MP uptake, proliferation, migration, activation of intracellular signalling pathways and cytokine release. Fluorescently labelled MPs fused with MSCs, transferring the fluorescent dyes to the MSC surface. GFP was transferred to and retained in MSCs incubated with GFP‐MPs, but not free GFP. Thus, only MP‐associated cellular proteins were taken up and retained by MSCs, suggesting that MP biomolecules, but not secreted factors, are shuttled to MSCs. MP and Sup treatment significantly increased MSC proliferation, migration, and MMP‐1, MMP‐3, CCL‐2/MCP‐1 and IL‐6 secretion compared with vehicle controls. MSCs treated with Sup and MPs also exhibited activated NF‐κB signalling. Taken together, these results suggest that MPs act to regulate MSC functions through several mechanisms.  相似文献   

11.
Endothelial cell dysfunction (ECD) is emerging as the common denominator for diverse and highly prevalent cardiovascular diseases. Recently, an increased number of procoagulant circulating endothelial microparticles (EMPs) has been identified in patients with acute myocardial ischemia, preeclampsia, and diabetes, which suggests that these particles represent a surrogate marker of ECD. Our previous studies showed procoagulant potential of endothelial microparticles and mobilization of microparticles by PAI-1. The aim of this study was to test the effects of isolated EMPs on the vascular endothelium. EMPs impaired ACh-induced vasorelaxation and nitric oxide production by aortic rings obtained from Sprague-Dawley rats in a concentration-dependent manner. This effect was accompanied by increased superoxide production by aortic rings and cultured endothelial cells that were coincubated with EMPs and was inhibited by a SOD mimetic and blunted by an endothelial nitric oxide synthase inhibitor. Superoxide was also produced by isolated EMP. In addition, p22(phox) subunit of NADPH-oxidase was detected in EMP. Our data strongly suggest that circulating EMPs directly affect the endothelium and thus not only act as a marker for ECD but also aggravate preexisting ECD.  相似文献   

12.

Background

Microparticles (MPs) are membrane vesicles released during cell activation and apoptosis. MPs have different biological effects depending on the cell from they originate. Cystic fibrosis (CF) lung disease is characterized by massive neutrophil granulocyte influx in the airways, their activation and eventually apoptosis. We investigated on the presence and phenotype of MPs in the sputum, a rich non-invasive source of inflammation biomarkers, of acute and stable CF adult patients.

Methods

Spontaneous sputum, obtained from 21 CF patients (10 acute and 11 stable) and 7 patients with primary ciliary dyskinesia (PCD), was liquefied with Sputasol. MPs were counted, visualized by electron microscopy, and identified in the supernatants of treated sputum by cytofluorimetry and immunolabelling for leukocyte (CD11a), granulocyte (CD66b), and monocyte-macrophage (CD11b) antigens.

Results

Electron microscopy revealed that sputum MPs were in the 100-500 nm range and did not contain bacteria, confirming microbiological tests. CF sputa contained higher number of MPs in comparison with PCD sputa. Levels of CD11a+-and CD66b+-, but not CD11b+-MPs were significantly higher in CF than in PCD, without differences between acute and stable patients.

Conclusions

In summary, MPs are detectable in sputa obtained from CF patients and are predominantly of granulocyte origin. This novel isolation method for MPs from sputum opens a new opportunity for the study of lung pathology in CF.  相似文献   

13.
Objective: Endothelial microparticles (EMPs) are considered as markers of endothelial dysfunction. In this study, we aimed to examine whether there is endothelial dysfunction in children with familial Mediterranean fever (FMF), hypothesizing that endothelial dysfunction would be present especially with acute-phase response in the active period of the disease.

Methods: This cross-sectional study included 65 FMF patients (41 attack free, 24 attack period) and 35 healthy controls. Circulating EMPs, serum amyloid A (SAA), and other inflammation markers were measured in all groups. Circulating EMPs were measured using flow cytometry. Study groups were compared for circulating EMP and inflammatory markers. The relationship between EMPs and the activation of the disease was evaluated.

Results: The levels of CD144+ and CD146+ EMPs in the FMF attack period group were significantly higher than those of the control group (p?p?+ and CD146+ EMP were significantly correlated with CRP.

Conclusions: Our results suggest that endothelial damage is present especially in the active period of the disease in children with FMF. The endothelial dysfunction becomes an overt parallel with inflammation.  相似文献   

14.
内皮细胞微粒是活化或凋亡的内皮细胞表面释放的直径1μm的小囊泡。它是反映内皮功能的标志物。研究表明在脓毒症的发生发展过程中,内皮细胞微粒在炎症反应、凝血反应、血管内皮功能等多方面能发挥有利和有害双方面的作用。脓毒症的研究进展和内皮细胞微粒密切相关。该文将就内皮细胞微粒与脓毒症研究进展做一简要综述。  相似文献   

15.

Background

Circulating microparticles (MPs) derived from endothelial cells and blood cells bear procoagulant activity and promote thrombin generation. Thrombin exerts proinflammatory effects mediating the progression of atherosclerosis. Aortic valve stenosis may represent an atherosclerosis-like process involving both the aortic valve and the vascular system. The aim of this study was to investigate whether MP-induced thrombin generation is related to coronary atherosclerosis and aortic valve calcification.

Methods

In a cross-sectional study of 55 patients with severe aortic valve stenosis, we assessed the coronary calcification score (CAC) as indicator of total coronary atherosclerosis burden, and aortic valve calcification (AVC) by computed tomography. Thrombin-antithrombin complex (TATc) levels were measured as a marker for thrombin formation. Circulating MPs were characterized by flow cytometry according to the expression of established surface antigens and by measuring MP-induced thrombin generation.

Results

Patients with CAC score below the median were classified as patients with low CAC, patients with CAC Score above the median as high CAC. In patients with high CAC compared to patients with low CAC we detected higher levels of TATc, platelet-derived MPs (PMPs), endothelial-derived MPs (EMPs) and MP-induced thrombin generation. Increased level of PMPs and MP-induced thrombin generation were independent predictors for the severity of CAC. In contrast, AVC Score did not differ between patients with high and low CAC and did neither correlate with MPs levels nor with MP-induced thrombin generation.

Conclusion

In patients with severe aortic valve stenosis MP-induced thrombin generation was independently associated with the severity of CAC but not AVC indicating different pathomechanisms involved in coronary artery and aortic valve calcification.  相似文献   

16.
Endothelial cell (EC)-derived microparticles (MPs) are small membrane vesicles associated with various vascular pathologies. Here, we investigated the role of MPs in matrix remodeling by analyzing their interactions with the extracellular matrix. MPs were shown to bind preferentially to surfaces coated with matrix molecules, and MPs bound fibronectin via integrin α(V) . MPs isolated from EC-conditioned medium (Sup) were significantly enriched for matrix-altering proteases, including matrix metalloproteinases (MMPs). MPs lacked the MMP inhibitors TIMP-1 and TIMP-2 found in the Sup and, while Sup strongly inhibited MMP activities but MPs did not. In fact, MPs were shown to bind and activate both endogenous and exogenous proMMP-2. Taken together, these results indicate that MPs interact with extracellular matrices, where they localize and activate MMP-2 to modify the surrounding matrix molecules. These findings provide insights into the cellular mechanisms of vascular matrix remodeling and identify new targets of vascular pathologies.  相似文献   

17.
Plasmodium falciparum, a dangerous parasitic agent causing malaria, invades human red blood cells (RBCs), causing hemolysis and microvascular obstruction. These and other pathological processes of malaria patients are due to metabolic and structural changes occurring in uninfected RBCs. In addition, infection activates the production of microparticles (MPs).ATP and byproducts are important extracellular ligands modulating purinergic signaling within the intravascular space.Here, we analyzed the contribution of uninfected RBCs and MPs to the regulation of extracellular ATP (eATP) of RBCs, which depends on the balance between ATP release by specific transporters and eATP hydrolysis by ectonucleotidases.RBCs were cultured with P. falciparum for 24–48 h prior to experiments, from which uninfected RBCs and MPs were purified. On-line luminometry was used to quantify the kinetics of ATP release. Luminometry, colorimetry and radioactive methods were used to assess the rate of eATP hydrolysis by ectonucleotidases. Rates of ATP release and eATP hydrolysis were also evaluated in MPs.Uninfected RBCs challenged by different stimuli displayed a strong and transient activation of ATP release, together with an elevated rate of eATP hydrolysis. MPs contained ATP in their lumen, which was released upon vesicle rupture, and were able to hydrolyze eATP.Results suggest that uninfected RBCs and MPs can act as important determinants of eATP regulation of RBCs during malaria.The comparison of eATP homeostasis in infected RBCs, ui-RBCs, and MPs allowed us to speculate on the impact of P. falciparum infection on intravascular purinergic signaling and the control of the vascular caliber by RBCs.  相似文献   

18.

Objective

Stent implantation into atherosclerotic coronary vessels impacts on downstream microvascular function and induces the release of particulate debris and soluble substances, which differs qualitatively and quantitatively between native right coronary arteries (RCAs) and saphenous vein grafts on right coronary arteries (SVG-RCAs). We have now quantified the release of microparticles (MPs) during stent implantation into stable atherosclerotic lesions and compared the release between RCAs and SVG-RCAs.

Methods

In symptomatic, male patients with stable angina and a stenosis in their RCA or SVG-RCA, respectively (n = 14/14), plaque volume and composition were analyzed using intravascular ultrasound before stent implantation. Coronary aspirate was retrieved during stent implantation with a distal occlusion/aspiration device and divided into particulate debris and plasma. Particulate debris was weighed. Platelet-derived MPs (PMPs) were distinguished by flow cytometry as CD41+, endothelium-derived MPs (EMPs) as CD144+, CD62E+ and CD31+/CD41-, leukocyte-derived MPs as CD45+, and erythrocyte-derived MPs as CD235+.

Results

In patients with comparable plaque volume and composition in RCAs and SVG-RCAs, intracoronary PMPs and EMPs were increased after stent implantation into their RCAs and SVG-RCAs (CD41+: 2729.6±645.6 vs. 4208.7±679.4 and 2355.9±503.9 vs. 3285.8±733.2 nr/µL; CD144+: 451.5±87.9 vs. 861.7±147.0 and 444.6±74.8 vs. 726.5±136.4 nr/µL; CD62E+: 1404.1±247.7 vs. 1844.3±378.6 and 1084.6±211.0 vs. 1783.8±384.3 nr/µL, P<0.05), but not different between RCAs and SVG-RCAs.

Conclusion

Stenting in stable atherosclerotic lesions is associated with a substantial release not only of PMPs, but also of EMPs in RCAs and SVG-RCAs. Their release does not differ between RCAs and SVG-RCAs.

Trial Registration

ClinicalTrials.gov NCT01430884  相似文献   

19.
Microparticles (MPs) are small membrane-bound vesicles released from cells undergoing activation or cell death. These particles display potent biological activities that can impact on physiologic and pathologic processes. Previous studies with the Jurkat T leukemia cell line demonstrated that staurosporine (STS) induces the release of MPs as cells undergo apoptosis. To investigate further this process, we tested the effects of STS, its analogue, 7-hydroxystaurosporine (UCN-01), and other protein kinase C (PKC) and cyclin-dependent kinase (CDK) inhibitors. FACS analysis was used to assess MP release. Results of these studies indicate that STS and UCN-01 induce MP release by Jurkat cells; in contrast, other PKC and CDK inhibitors failed to induce comparable release, suggesting that release does not result from simple inhibition of either kinase alone. Time course experiments indicated that STS-induced particle release occurred as early as 2 h after treatment, with the early release MPs displaying low levels of binding of annexin V and propidium iodide (PI). Early-release MPs, however, matured in culture to an annexin V- and PI-positive phenotype. Together, these results indicate that STS and UCN-01 induce MPs that are phenotypically distinct and reflect specific patterns of kinase inhibition during apoptosis.  相似文献   

20.
Lee ST  Chu K  Jung KH  Kim JM  Moon HJ  Bahn JJ  Im WS  Sunwoo J  Moon J  Kim M  Lee SK  Roh JK 《PloS one》2012,7(4):e35713

Background

Activated endothelial cells release plasma membrane submicron vesicles expressing CD62E (E-selectin) into blood, known as endothelial microparticles (EMPs). We studied whether the levels of endothelial microparticles expressing CD62E+, CD31+/Annexin-V+, or CD31+/CD42 predict cardiovascular outcomes in patients with stroke history.

Methods/Principal Findings

Patients with stroke history at least 3 months prior to enrolment were recruited. Peripheral blood EMP levels were measured by flow cytometry. Major cardiovascular events and death were monitored for 36 months. Three hundred patients were enrolled, of which 298 completed the study according to protocol. Major cardiovascular events occurred in 29 patients (9.7%). Nine patients died, five from cardiovascular causes. Cumulative event-free survival rates were lower in patients with high levels of CD62E+ microparticles. Multivariate Cox regression analysis adjusted for cardiovascular risk factors, medications and stroke etiologic groups showed an association between a high CD62E+ microparticle level and a risk of major cardiovascular events and hospitalization. Levels of other kinds of EMPs expressing CD31+/Annexin-V+ or CD31+/CD42 markers were not predictive of cardiovascular outcomes.

Conclusion

A high level of CD62E+ microparticles is associated with cardiovascular events in patients with stroke history, suggesting that the systemic endothelial activation increases the risk for cardiovascular morbidities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号