首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Myocardial ischemia and reperfusion injury (MIRI) includes major drawbacks, such as excessive formation of free radicals and also overload of calcium, which lead to cell death, tissue scarring, and remodeling. The current study aims to explore whether KRT1 silencing may ameliorate MIRI via the Notch signaling pathway in mouse models. Myocardial tissues were used for the determination of the positive rate of KRT1 protein expression, apoptosis of myocardial cells, creatine kinase (CK) and lactate dehydrogenase (LDH) expression, expression of related biomarkers as well as myocardial infarction area. The transfected myocardial cells were treated with KRT1-siRNA, Jagged1, and DAPT (inhibitor of Notch-1 signaling pathway). The expression of KRT1, NICD, Hes1, Bcl-2, and Bax protein was detected. The MTT assay was applied for cell proliferation and flow cytometry was used for cell apoptosis. Mice with MIRI had a higher positive rate of KRT1 protein expression, apoptosis of myocardial cells, CK and LDH expression, myocardial infarction area, increased expression of MDA, NO, SDH, IL-1, IL-6, TNF-α, CRP, KRT1, Bax protein, CK, and LDH, and decreased expression of SOD, NICD, Hes1, and Bcl-2. The downregulation of KRT1 led to decreased expression of KRT1 and Bax protein, increased expression of NICD, Hes1, and Bcl-2, decreased cell apoptosis, and improved cell proliferation. The inhibition of the Notch signaling pathway leads to reduced expression of Bax, increased expression of NICD, Hes1, and Bcl 2, and also decreased cell apoptosis and increased cell proliferation. Our data conclude that KRT1 silencing is able to make MIRI better by activating the Notch signaling pathway in mice.  相似文献   

2.
Acute coronary syndrome (ACS) is characterized by atherosclerotic plaque rupture with a high incidence of recurrent ischemic events. Several microRNAs are found to be aberrantly expressed in atherosclerotic plaques. This study aims to investigate the effects of microRNA-9 (miR-9) on vulnerable atherosclerotic plaque and vascular remodeling in ACS and underlying mechanisms. Microarray-based gene expression profiling was used to identify differentially expressed genes related to ACS and regulatory miRNAs. Oxidized low-density lipoprotein (lectin-like) receptor 1 (OLR1) was identified to be aberrantly activated in ACS and regulated by miR-9. OLR1 was verified as a target gene of miR-9 by bioinformatics prediction and dual luciferase reporter gene assay. The atherosclerotic models were induced in ApoE−/− mice, in which the agomir or antagomir of miR-9, or small interfering RNA (siRNA) against OLR1 were separately introduced. Serum lipid levels and expression of vascular remodeling and inflammatory response-related factors were determined, respectively. On the basis of the obtained results, in the atherosclerosis mice treated with the agomir of miR-9 and siRNA against OLR1, the p38-mitogen-activated protein kinase (p38MAPK) pathway was inhibited; levels of triglyceride, total cholesterol, low-density lipoprotein cholesterol, tumor necrosis factor-α, interleukin-6, and vascular endothelial growth factor were reduced, but the high-density lipoprotein cholesterol level was increased, along with decreased vulnerable atherosclerotic plaque area and enhanced vascular remodeling. Taken together, these findings suggested an inhibitory role miR-9 acts in the formation of vulnerable atherosclerotic plaques in ACS mice, along with a promoted vascular remodeling, via a negative feedback regulation of OLR1-mediated p38MAPK pathway.  相似文献   

3.
4.
Renal interstitial fibrosis is a key factor in the development of chronic renal diseases, possibly leading to uremia. The present study conducted aimed to assess the hypothesis whether keratin 1 (KRT1) silencing could suppress kidney interstitial fibrosis and glomerular sclerosis via the Notch pathway to alleviate uremic symptoms. Differentially expressed genes associated with uremia were identified using the gene expression omnibus (GEO) database. Uremic rat models were established, in which short hairpin-RNA against KRT1, activators, and inhibitors of the Notch pathway were transfected. To further validate the mechanism of KRT1 in uremia, KRT1 expression, cell apoptosis, glomerular area (GA), and glomerular capillary volume (GV), the score of glomerular sclerosis, and tubulointerstitial injury were assayed and investigated. GEO database revealed that KRT1 was upregulated in uremia and regulated the Notch pathway. GA, GV, cell apoptosis, glomerular sclerosis, and tubulointerstitial injury were typically located in more elevated levels of uremia in rats. KRT1 silencing and Notch pathway inhibition decreased the expression of Jagged1, Notch1, NICD1, Hey1, Hes1, α-SMA, and FN, which further resulted in decreased cell apoptosis, GA, GV, the score of glomerular sclerosis, and tubulointerstitial injury. Subsequently, the effect of KRT1 silencing on uremia was no longer evident once the Notch pathway was activated. The co-localization of high expression KRT1 and Notch1 was found in uremia. In summary, the results identified KRT1 as a key regulator in uremia progression, and KRT1 silencing can suppress glomerular sclerosis and tubulointerstitial injury via inactivation of the Notch pathway in uremic rats.  相似文献   

5.
Evidence has demonstrated that the microRNA (miR) may play a significant role in the development of congenital heart disease (CHD). Here, we explore the mechanism of microRNA-592 (miR-592) in heart development and CHD with the involvement of KCTD10 and Notch signaling pathway in a CHD mouse model. Cardiac tissues were extracted from CHD and normal mice. Immunohistochemistry staining was performed to detect positive expression rate of KCTD10. A series of inhibitor, activators, and siRNAs was introduced to verified regulatory functions for miR-592 governing KCTD10 in CHD. Furthermore, the effect of miR-592 on cell proliferation and apoptosis was also investigated. Downregulated positive rate of KCTD10 was observed in CHD mice. Downregulation of miR-592 would upregulate expression of KCTD10 and inhibit the activation of Notch signaling pathway, thus promote cell proliferation. This study demonstrates that downregulation of miR-592 prevents CHD and hypoplastic heart by inhibition of the Notch signaling pathway via negatively binding to KCTD10.  相似文献   

6.
Autophagy dysfunction in mouse atherosclerosis models has been associated with increased lipid accumulation, apoptosis and inflammation. Expression of cystatin C (CysC) is decreased in human atheroma, and CysC deficiency enhances atherosclerosis in mice. Here, we first investigated the association of autophagy and CysC expression levels with atheroma plaque severity in human atherosclerotic lesions. We found that autophagy proteins Atg5 and LC3β in advanced human carotid atherosclerotic lesions are decreased, while markers of dysfunctional autophagy p62/SQSTM1 and ubiquitin are increased together with elevated levels of lipid accumulation and apoptosis. The expressions of LC3β and Atg5 were positively associated with CysC expression. Second, we investigated whether CysC expression is involved in autophagy in atherosclerotic apoE‐deficient mice, demonstrating that CysC deficiency (CysC?/?) in these mice results in reduction of Atg5 and LC3β levels and induction of apoptosis. Third, macrophages isolated from CysC?/? mice displayed increased levels of p62/SQSTM1 and higher sensitivity to 7‐oxysterol‐mediated lysosomal membrane destabilization and apoptosis. Finally, CysC treatment minimized oxysterol‐mediated cellular lipid accumulation. We conclude that autophagy dysfunction is a characteristic of advanced human atherosclerotic lesions and is associated with reduced levels of CysC. The deficiency of CysC causes autophagy dysfunction and apoptosis in macrophages and apoE‐deficient mice. The results indicate that CysC plays an important regulatory role in combating cell death via the autophagic pathway in atherosclerosis.  相似文献   

7.
8.
Phosphatidylcholine-specific phospholipase C (PC-PLC) is a key factor in apoptosis and autophagy of vascular endothelial cells (VECs), and involved in atherosclerosis in apolipoprotein E−/− (apoE−/−) mice. But the endogenous regulators of PC-PLC are not known. We recently found a small chemical molecule (6-amino-2, 3-dihydro-3-hydroxymethyl-1, 4-benzoxazine, ABO) that could inhibit oxidized low-density lipoprotein (oxLDL)-induced apoptosis and promote autophagy in VECs, and further identified ABO as an inhibitor of annexin A7 (ANXA7) GTPase. Based on these findings, we hypothesize that ANXA7 is an endogenous regulator of PC-PLC, and targeting ANXA7 by ABO may inhibit atherosclerosis in apoE−/− mice. In this study, we tested our hypothesis. The results showed that ABO suppressed oxLDL-induced increase of PC-PLC level and activity and promoted the co-localization of ANXA7 and PC-PLC in VECs. The experiments of ANXA7 knockdown and overexpression demonstrated that the action of ABO was ANXA7-dependent in cultured VECs. To investigate the relation of ANXA7 with PC-PLC in atherosclerosis, apoE−/− mice fed with a western diet were treated with 50 or 100 mg/kg/day ABO. The results showed that ABO decreased PC-PLC levels in the mouse aortic endothelium and PC-PLC activity in serum, and enhanced the protein levels of ANXA7 in the mouse aortic endothelium. Furthermore, both dosages of ABO significantly enhanced autophagy and reduced apoptosis in the mouse aortic endothelium. As a result, ABO significantly reduced atherosclerotic plaque area and effectively preserved a stable plaques phenotype, including reduced lipid deposition and pro-inflammatory macrophages, increased anti-inflammatory macrophages, collagen content and smooth muscle cells, and less cell death in the plaques. In conclusion, ANXA7 was an endogenous regulator of PC-PLC, and targeting ANXA7 by ABO inhibited atherosclerosis in apoE−/− mice.  相似文献   

9.
10.
11.
This study aims to examine whether miR-31 promotes endogenous NSC proliferation and be used for spinal cord injury management. In the present study, the morpholino knockdown of miR-31 induced abnormal neuronal apoptosis in zebrafish, resulting in impaired development of the tail. miR-31 agomir transfection in NSCs increased Nestin expression and decreased ChAT and GFAP expression levels. miR-31 induced the proliferation of mouse NSCs by upregulating the Notch signaling pathway, and more NSCs entered G1; Notch was inhibited by miR-31 inactivation. Injection of a miR-31 agomir into mouse models of spinal cord injury could effectively restore motor functions after spinal cord injury, which was achieved by promoting the proliferation of endogenous NSCs. After the injection of a miR-31 agomir in spinal cord injury mice, the expression of Nestin and GFAP increased, while GFAP expression decreased. In conclusion, the zebrafish experiments prove that a lack of miR-31 will block nervous system development. In spinal cord injury mouse models, miR-31 overexpression might promote spinal cord injury repair.  相似文献   

12.
13.
Atherosclerosis, the leading cause of death in developed countries, has been linked to hypercholesterolemia for decades. More recently, atherosclerotic lesion progression has been shown to depend on persistent, chronic inflammation in the artery wall. Although several studies have implicated infectious agents in this process, the role of infection in atherosclerosis remains controversial. Because the involvement of monocytes and macrophages in the pathogenesis of atherosclerosis is well established, we investigated the possibility that macrophage innate immunity signaling pathways normally activated by pathogens might also be activated in response to hyperlipidemia. We examined atherosclerotic lesion development in uninfected, hyperlipidemic mice lacking expression of either lipopolysaccharide (LPS) receptor CD14 or myeloid differentiation protein-88 (MyD88), which transduces cell signaling events downstream of the Toll-like receptors (TLRs), as well as receptors for interleukin-1 (IL-1) and IL-18. Whereas the MyD88-deficient mice evinced a marked reduction in early atherosclerosis, mice deficient in CD14 had no decrease in early lesion development. Inactivation of the MyD88 pathway led to a reduction in atherosclerosis through a decrease in macrophage recruitment to the artery wall that was associated with reduced chemokine levels. These findings link elevated serum lipid levels to a proinflammatory signaling cascade that is also engaged by microbial pathogens.  相似文献   

14.
Myocardial dysfunction is a major cause of death in sepsis. MicroRNA-146b (miR-146b) has been reported to be related to myocardial disease. However, the role of miR-146b in sepsis as well as myocardial injury is still unclear. Septic cardiac dysfunction in mice was induced by cecal ligation and puncture (CLP) and miR-146b was found increased significantly in the myocardium tissue of CLP mice. It was found that up-regulation of miR-146b by agomiR injection suppressed expression of IL-1β in mice as well as myocardium apoptosis in CLP mice. However, suppression of miR-146b by antagomiR injection had inverse effects. Notch1 was identified as a target gene of miR-146b by bioinformatics analysis. And it was verified that in cardiomyocytes, the decrease of miR146b led to increase of both the mRNA and protein level of Notch1 and vice versa. In septic mice serum stimulated cardiomyocytes, up-regulation of miR-146b decreased the level of Notch1 and Hes1. The knockout of Notch1 in transgenic mice showed that the deficiency of Notch1 improved myocardial injury induced by CLP operation. The apoptosis of cardiomyocytes was relieved and the expression of IL-1β was decreased. In conclusion, miR-146b targets to Notch1 and protected cardiomyocytes against inflammation and apoptosis.  相似文献   

15.
Recent studies have shown that circulating microRNAs (miRNA) play a critical role in diagnosing acute coronary syndrome (ACS). This study aims to investigate the effect of miR-224 on atherosclerotic plaques forming and vascular remodeling in ACS and its relationship with TGF-β/Smad pathway. Myocardial infarction (MI) rat model was established and lentivirus vector of miR-224 inhibitor was prepared for investigating the effect of downregulated miR-224 on the contents of nitric oxide (NO) and endothelin-1 (ET-1), blood lipid levels and inflammatory factor levels in serum as well as the TGF-β/Smad pathway. The rats suffering from MI had decreased survival rates and exhibited reduced levels of NO, high-density lipoprotein cholesterol, and lumen diameter, and Smad7 messenger RNA (mRNA) and protein expression; while had significantly increased ratio of heart weight or body weight, levels of ET-1, inflammatory factors, blood lipid indexes, vascular remodeling indexes, collagen volume fraction, vulnerable atherosclerotic plaque area, VCAM-1 and MMP-2 protein expression, TGF-β, Smad2, Smad3, and Smad4 mRNA and protein expression. After inhibiting the TGF-β/Smad pathway, the rats suffering from MI showed notably opposite trend. In conclusion, downregulation of miR-224 expression promotes the formation of vulnerable atherosclerotic plaques and vascular remodeling in ACS through activation of the TGF-β/Smad pathway. Therefore, this study provides a new therapeutic target for ACS.  相似文献   

16.
17.
Vascular endothelial cell (VEC) apoptosis is the main event occurring during the development of atherosclerosis. Pterostilbene (PT), a natural dimethylated analog of resveratrol, has been the subject of intense research in cancer and inflammation. However, the protective effects of PT against oxidized low-density lipoprotein (oxLDL)-induced apoptosis in VECs have not been clarified. We investigated the anti-apoptotic effects of PT in vitro and in vivo in mice. PT at 0.1–5 μM possessed antioxidant properties comparable to that of trolox in a cell-free system. Exposure of human umbilical vein VECs (HUVECs) to oxLDL (200 μg/ml) induced cell shrinkage, chromatin condensation, nuclear fragmentation, and cell apoptosis, but PT protected against such injuries. In addition, PT injection strongly decreased the number of TUNEL-positive cells in the endothelium of atherosclerotic plaque from apoE−/− mice. OxLDL increased reactive oxygen species (ROS) levels, NF-κB activation, p53 accumulation, apoptotic protein levels and caspases-9 and -3 activities and decreased mitochondrial membrane potential (MMP) and cytochrome c release in HUVECs. These alterations were attenuated by pretreatment with PT. PT inhibited the expression of lectin-like oxLDL receptor-1 (LOX-1) expression in vitro and in vivo. Cotreatment with PT and siRNA of LOX-1 synergistically reduced oxLDL-induced apoptosis in HUVECs. Overexpression of LOX-1 attenuated the protection by PT and suppressed the effects of PT on oxLDL-induced oxidative stress. PT may protect HUVECs against oxLDL-induced apoptosis by downregulating LOX-1-mediated activation through a pathway involving oxidative stress, p53, mitochondria, cytochrome c and caspase protease. PT might be a potential natural anti-apoptotic agent for the treatment of atherosclerosis.  相似文献   

18.
19.
20.
Atherosclerosis has been recognized as a chronic inflammation process induced by lipid of the vessel wall. Oxidized low-density lipoprotein (ox-LDL) can drive atherosclerosis progression involving macrophages. Recently, long noncoding RNAs (lncRNAs) have been reported to play critical roles in atherosclerosis development. In our current study, we focused on the biological roles of lncRNA NEAT1 in atherosclerosis progress. Here, we found that ox-LDL was able to trigger human macrophages THP-1 cells, a human monocytic cell line, apoptosis in a dose-dependent and time-dependent course. In addition, we observed that NEAT1 was significantly increased in THP-1 cells incubated with ox-LDL and meanwhile miR-342-3p was greatly decreased. Then, NEAT1 was silenced by transfection of small interfering RNA (siRNA) of NEAT1 into THP-1 cells. As exhibited, CD36, oil-red staining levels, total cholesterol (TC), total cholesterol (TG) levels and THP-1 cell apoptosis were obviously repressed by knockdown of NEAT1. Furthermore, inhibition of NEAT1 contributed to the repression of inflammation in vitro. Interleukin 6 (IL-6), IL-1β, cyclooxygenase-2 (COX-2) and tumour necrosis factor-alpha (TNF-α) protein levels were remarkably depressed by NEAT1 siRNA in THP-1 cells. By using bioinformatics analysis, miR-342-3p was predicted as a downstream target of NEAT1 and the correlation between them was confirmed in our study. Moreover, overexpression of miR-342-3p could also greatly suppress inflammation response and lipid uptake in THP-1 cells. Knockdown of NEAT1 and miR-342-3p mimics inhibited lipid uptake in THP-1 cells. In conclusion, we implied that blockade of NEAT1 repressed inflammation response through modulating miR-342-3p in human macrophages THP-1 cells and NEAT1 may offer a promising strategy to treat atherosclerotic cardiovascular diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号