首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of circulating exosomal microRNAs (miRNAs) in colorectal cancer (CRC) has drawn more and more attention during the past few years. Previously, we have identified several specific miRNAs in serum exosomes as potential CRC biomarkers. However, little is known about the association between exosome-encapsulated miR-548c-5p and outcomes of patients with CRC. In the current study, the expression of serum exosomal miR-548c-5p was investigated by quantitative real-time polymerase chain reaction. Its correlation with CRC prognosis was estimated by Kaplan-Meier survival and log-rank tests. Cox regression analysis based on uni- and multivariate analyses was performed to estimate the relationship of exosome-encapsulated miR-548c-5p with the clinicopathological factors of patients with CRC. Reduced levels of serum exosomal miR-548c-5p were more significant in CRC patients with liver metastasis and at later TNM stage (III/IV tumor stages). Serum exosomal miR-548c-5p could inhibit the proliferation of CRC cells, while the precise molecular mechanisms warranted further elucidation. In addition, decreased levels of serum exosomal miR-548c-5p were independently associated with shorter overall survival in CRC adjusted by age, sex, tumor grade vascular infiltration, TNM stage (III/IV tumor stages) and metastasis (hazard ratio = 3.40, 95% confidence interval 1.02-11.27; P = 0.046). The downregulation of exosomal miR-548c-5p in serum predicts poor prognosis in patients with CRC. Exosomal miR-548c-5p may be a critical biomarker for CRC diagnosis and prognosis.  相似文献   

2.
Preeclampsia is a serious complication of pregnancy and leads to maternal hypertension and proteinuria. It remains a major health problem for mothers and babies across the world due to high maternal and fetal morbidity and mortality. Accumulated data have implicated the critical role of microRNA in preeclampsia. However, to date, the role of miR-548c-5p in preeclampsia remains vaguely understood. In this study, we first elucidate the role of miR-548c-5p and its underlying molecular mechanism in preeclampsia. Compared with healthy controls, miR-548c-5p was obviously downregulated in serum exosomes and placental mononuclear cells in patients with preeclampsia. Nonetheless, PTPRO was significantly upregulated and negatively associated with miR-548c-5p in placental mononuclear cells in patients with preeclampsia. PTPRO was a target of miR-548c-5p. PTPRO was downregulated in the miR-548c-5p-overexpressed macrophages. In addition, miR-548c-5p could inhibit the proliferation and activation of LPS-stimulated macrophages, as evidenced by decreased levels of inflammatory cytokines (IL-12 and TNF-α) and less nuclear translocation of pNF-κB in pTHP1 cells. MiR-548c-5p acts as an anti-inflammatory factor in preeclampsia. The axis of miR-548c-5p/PTPRO/NF-κB may provide novel targets for the diagnosis and treatment of preeclampsia.  相似文献   

3.
ABSTRACT

Oxaliplatin (L-OHP) is one of the effective chemotherapeutic drugs for colorectal cancer (CRC). Further investigation into the molecular mechanism of chemoresistance could improve outcomes for patients with colorectal cancer. Recently, microRNAs have been reported as a key in drug resistance of tumors. In this study, we aimed to investigate the effects of miR-153-5p in L-OHP-resistant CRC cells, and its underlying mechanism. Downregulation of miR-153-5p was observed in CRC cells, while upregulation of miR-153-5p enhances the chemosensitivity of CRC/L-OHP cells. The autophagy of CRC/L-OHP cells was markedly increased after exposure to L-OHP but abolished by the upregulation of miR-153-5p. Dual-luciferase reporter assays validated that Bcl-2 was a direct target of miR-153-5p. In conclusion, our data suggested that miR-153-5p was a mediator of cisplatin resistance in colorectal cancer by affecting Bcl-2-mediated autophagy, indicating a new therapeutic target for CRC treatment.  相似文献   

4.
An increasing amount of evidence has proven the vital role of circular RNAs (circRNAs) in cancer progression. However, there remains a dearth of knowledge on the function of circRNAs in triple-negative breast cancer (TNBC). Utilizing a circRNA microarray dataset, four circRNAs were identified to be abnormally expressed in TNBC. Among them, circBACH2 was most significantly elevated in TNBC cancerous tissues and its high expression was positively correlated to the malignant progression of TNBC patients. In normal human mammary gland cell line, the overexpression of circBACH2 facilitated epithelial to mesenchymal transition and cell proliferation. In TNBC cell lines, circBACH2 knockdown suppressed the malignant progression of TNBC cells. Mechanistically, circBACH2 sponged miR-186-5p and miR-548c-3p, thus releasing the C-X-C chemokine receptor type 4 (CXCR4) expression. The interference of miR-186-5p/miR-548c-3p efficiently promoted the cell proliferation, migration, and invasion suppressed by circBACH2 knockdown in the TNBC cell lines. Finally, circBACH2 knockdown repressed the growth and lung metastasis of TNBC xenografts in nude mice. In summary, circBACH2 functions as an oncogenic circRNA in TNBC through a novel miR-186-5p/miR-548c-3p/CXCR4 axis.Subject terms: Cancer, Cell biology  相似文献   

5.
Circular RNAs (circRNAs) have been demonstrated to be important regulators in human malignant tumors, including colorectal cancer (CRC). While the role circ-ZEB1 played in CRC remains unclear. In this study, we aim to explore the biological function and the underlying mechanism of circ-ZEB1 in CRC. RNAscope was used to analyze the expression and localization of circ-ZEB1 in CRC tissues. Loss of function experiments were conducted, including CCK-8, transwell assays, flow cytometry analysis, and murine xenograft models, so as to detect the effect of circ-ZEB1 on CRC cells. IC50 assay was used to evaluate the influence of circ-ZEB1 on the chemoresistance of CRC cells. Epithelial-mesenchymal transition (EMT) related markers were detected. The relationship between circ-ZEB1 and miR-200c-5p was investigated by FISH, dual-luciferase reporter assay, and RIP assay. We found in our study that circ-ZEB1 was significantly upregulated in CRC tissues. Downregulation of circ-ZEB1 inhibited cell proliferation, colony formation, as well as cell migration and invasion abilities of CRC cell lines. In vivo experiments indicated that knockdown of circ-ZEB1 suppressed tumorigenesis and distant metastasis of CRC cells in nude mice. What's more, EMT and chemoresistance of CRC cells were also attenuated following circ-ZEB1 knockdown. Mechanistically, we proved that circ-ZEB1 could directly bind with miR-200c and functioned as miR-200c sponge to exert its biological functions in CRC cells. In conclusion, circ-ZEB1 could promote CRC cells progression, EMT, and chemoresistance via acting on miR-200c, elucidating a potential therapeutic target to inhibit CRC progression.  相似文献   

6.
MicroRNAs (miRNAs/miRs) have aroused increasing attention in colorectal cancer (CRC) therapy. This study is designed for a detailed analysis of the roles of miR-16-5p and forkhead box K1 (FOXK1) in cell angiogenesis and proliferation during CRC in addition to their underlying mechanisms. CRC tissues and colon cancer cell lines (SW620 and HCT8) were investigated. qRT-PCR and Western blot were utilized to evaluate miR-16-5p and FOXK1 expression. Following gain- and loss-of-function assays on miR-16-5p or FOXK1, the effects of miR-16-5p and FOXK1 were assessed on cell angiogenesis and proliferation in CRC cells. A dual-luciferase reporter assay was employed to evaluate the binding relationship of miR-16-5p and FOXK1. Western blot was used to determine the effects of miR-16-5p and FOXK1 on key molecules of the PI3K/Akt/mTOR pathway. Highly expressed FOXK1 and lowly expressed miR-16-5p were observed in CRC cells and tissues. miR-16-5p overexpression or FOXK1 knockdown reduced CRC cell proliferation and angiogenesis of human umbilical vein endothelial cells co-cultured with the supernatant of CRC cells, whereas miR-16-5p silencing or FOXK1 upregulation caused opposite trends. Additionally, miR-16-5p negatively modulated FOXK1 expression. The blockade of the PI3K/Akt/mTOR pathway was triggered by miR-16-5p overexpression or FOXK1 silencing. In conclusion, miR-16-5p hampers cell angiogenesis and proliferation during CRC by targeting FOXK1 to block the PI3K/Akt/mTOR pathway.Key words: microRNA-16-5p, forkhead box K1, PI3K/Akt/mTOR pathway, colorectal cancer, proliferation, angiogenesis  相似文献   

7.
8.
There is evidence indicating that bile acid is a promoter of colorectal cancer. Deoxycholic acid modifies apoptosis and proliferation by affecting intracellular signaling and gene expression. We are interested in revealing the relationship between deregulated miRNAs and deoxycholic acid in colorectal cancer development. We found that miR-199a-5p was expressed at a low level in human primary colonic epithelial cells treated with deoxycholic acid compared with control, and miR-199a-5p was significantly down-regulated in colorectal cancer tissues. The miR-199a-5p expression in colorectal cancer cells led to the suppression of tumor cell growth, migration and invasion. We further identified CAC1, a cell cycle-related protein expressed in colorectal cancer, as a miR-199a-5p target. We demonstrated that CAC1 is over-expressed in malignant tumors, and cellular CAC1 depletion resulted in cancer growth suppression. HCT-8 cells transfected with a miR-199a-5p mimic or inhibitor had a decrease or increase in CAC1 protein levels, respectively. The results of the luciferase reporter gene analysis demonstrated that CAC1 was a direct miR-199a-5p target. The high miR-199a-5p expression and low CAC1 protein expression reverse the tumor cell drug resistance. We conclude that miR-199a-5p can regulate CAC1 and function as a tumor suppressor in colorectal cancer. Therefore, the potential roles of deoxycholic acid in carcinogenesis are to decrease miR-199a-5p expression and/or increase the expression of CAC1, which contributes to tumorigenesis in patients with CRC. These findings suggest that miR-199a-5p is a useful therapeutic target for colorectal cancer.  相似文献   

9.
10.
ObjectiveThe role of exosomes in human cancers has been identified, while the effect of cancer-associated fibroblasts (CAFs)-derived exosomes (CAF-exos) transmitting microRNAs (miRNAs) on colorectal cancer (CRC) remains largely unknown. We aim to explore the impact of CAF-derived exosomal miR-135b-5p on CRC progression by targeting thioredoxin-interacting protein (TXNIP).MethodsCRC tissues were collected to obtain CAF-exos, which were used to co-culture with LoVo and HT29 cells. The effect of miR-135b-5p and TXNIP on the in vivo growth, in vitro proliferation, apoptosis, migration, invasion and angiogenesis of CRC cells. miR-135b-5p and TXNIP expression in exosomes and CRC cells were detected and their targeting relationship was confirmed.ResultsMiR-135b-5p was upregulated whereas TXNIP was downregulated in CRC tissues and cells. The CAF-exos and CAF-exos upregulating miR-135b-5p promoted in vivo growth, in vitro proliferation, migration and invasion, and suppressed apoptosis of CRC cells, and also promoted the HUVEC angiogenesis. TXNIP was confirmed as a target of miR-135b-5p and overexpression of TXNIP could weaken the pro-CRC effect of exosomal miR-135b-5p,ConclusionCAF-exos upregulate miR-135b-5p to promote CRC cell growth and angiogenesis by inhibiting TXNIP.  相似文献   

11.
12.
Androgens and androgen receptors are vital factors involved in prostate cancer progression, and androgen ablation therapies are commonly used to treat advanced prostate cancer. However, the acquisition of androgen ablation therapy resistance remains a challenge. Recently, androgen receptor splicing variants lacking the ligand-binding domain have been reported to play a critical role in the acquisition of androgen ablation therapy resistance. In the present study, we revealed that the messenger RNA expression and the protein levels of an androgen receptor variant 7 (AR-V7) were higher in prostate cancer tissue samples and in the AR-positive prostate cancer cell line, VCaP. In contrast, microRNA (miR)-30c-1-3p/miR-103a-2-5p expression was significantly downregulated in tumor tissues and cells. miR-30c-1-3p/miR-103a-2-5p overexpression could inhibit AR-V7 expression, suppress VCaP cell growth, and inhibit AR-V7 downstream factor expression by directly targeting the 3′-untranslated region of AR-V7. Under enzalutamide (Enza) treatment, the effects of AR-V7 overexpression were the opposite of those of miR-103a-2-5p/miR-30c-1-3p overexpression; more importantly, the effects of miR-103a-2-5p/miR-30c-1-3p overexpression could be significantly reversed by AR-V7 overexpression under Enza. In summary, we demonstrated a novel mechanism of the miR-30c-1-3p/miR-103a-2-5p/AR-V7 axis modulating the cell proliferation of AR-positive prostate cancer cells via AR downstream targets. The clinical application of miR-30c-1-3p/miR-103a-2-5p needs further in vivo validation.  相似文献   

13.
14.
We have previously demonstrated that a stromal cell-derived factor-1 (SDF-1; CXCL12)/CXCR4 system is involved in the establishment of metastasis in oral cancer. Recently, small non coding RNAs, microRNAs (miRNAs) have been shown to be involved in the metastatic process of several types of cancers. However, the miRNAs that contribute to metastases induced by the SDF-1/CXCR4 system in oral cancer are largely unknown. In this study, we examined the metastasis-related miRNAs induced by the SDF-1/CXCR4 system using B88-SDF-1 oral cancer cells, which exhibit functional CXCR4 and distant metastatic potential in vivo. Through miRNA microarray analysis, we identified the upregulation of miR-518c-5p in B88-SDF-1 cells, and confirmed the induction by real-time PCR analysis. Although an LNA-based miR-518c-5p inhibitor did not affect cell growth of B88-SDF-1 cells, it did significantly inhibit the migration of the cells. Next, we transfected a miR-518c expression vector into parental B88 cells and CAL27 oral cancer cells and isolated stable transfectants, B88-518c and CAL27-518c cells, respectively. The anchorage-dependent and -independent growth of miR-518c transfectants was significantly enhanced compared with the growth of mock cells. Moreover, we detected the enhanced migration of these cells. The LNA-based miR-518c-5p inhibitor significantly impaired the enhanced cell growth and migration of miR-518c transfectants, indicating that these phenomena were mainly dependent on the expression of miR-518c-5p. Next, we examined the function of miR-518c-5p in vivo. miR-518c transfectants or mock transfectants were inoculated into the masseter muscle or the blood vessels of nude mice. Tumor volume, lymph nodes metastasis, and lung metastasis were significantly increased in the mice inoculated with the miR-518c transfectants. These results indicated that miR-518c-5p regulates the growth and metastasis of oral cancer as a downstream target of the SDF-1/CXCR4 system.  相似文献   

15.
BackgroundRBP-J is involved in number of cellular processes. However, the potential mechanisms of RBP-J on colorectal cancer (CRC) development have not been clearly defined. In this study, we aimed to investigate the role and molecular mechanism of RBP-J in CRC.MethodsThe expression levels of RBP-J and Tiam1 in CRC tissues and cells were evaluated by RT-qPCR or western blot. RBP-J was knocked down with sh-RBP-J or overexpressed by pcDNA3.1-RBP-J in CRC cells. Cell proliferation, migration and invasion abilities were analyzed by MTT, wound healing, and transwell assay, respectively. CHIP-qPCR, RIP and dual luciferase reporter assays were performed to confirm the interaction between miR-182-5p and RBP-J or Tiam1. Expression levels of p-p38 MAPK, p38 MAPK, Slug-1, Twist1 and MMP-9 were analyzed by western blot. G-LISA test was used to detect Rac1 activity.ResultsOur results showed that the expression of RBP-J and Tiam1 was significantly up-regulated in CRC tissues and cells. RBP-J overexpression promoted proliferation, migration and invasion of CRC cells. Moreover, RBP-J was found to directly target miR-182-5p promoter and positively regulate the Tiam1/Rac1/p38 MAPK signaling pathway in CRC cells. It was also proved that miR-182-5p can bind Tiam1 directly. Furthermore, experiments revealed that RBP-J could promote CRC cell proliferation, migration and invasion via miR-182-5p-mediated Tiam1/Rac1/p38 MAPK axis. In addition, knockdown of RBP-J reduced tumor growth and metastasis in CRC mice.ConclusionRBP-J regulates CRC cell growth and metastasis through miR-182-5p mediated Tiam1/Rac1/p38 MAPK signaling pathway, implying potential novel therapeutic targets for CRC patients.  相似文献   

16.
Long noncoding RNAs (lncRNAs) are important regulators of the biological functions and underlying molecular mechanisms of colorectal cancer (CRC). However, the role of the lncRNA ZEB1-AS1 in CRC is not thoroughly understood. In this study, we found that ZEB1-AS1 was markedly upregulated in CRC. ZEB1-AS1 knockdown significantly suppressed CRC cell proliferation and induced apoptosis, whereas enhanced expression of ZEB1-AS1 had the opposite effect. Bioinformatics analysis identified miR-181a-5p as a candidate target of ZEB1-AS1. Moreover, we found an inverse correlation between ZEB1-AS1 and miR-181a-5p expression in CRC tissue. Inhibition of miR-181a-5p significantly upregulated ZEB1-AS1, whereas overexpression of miR-181a-5p had the opposite effect, suggesting that ZEB1-AS1 is negatively regulated by miR-181a-5p. Using luciferase reporter and RIP assays, we found that miR-181a-5p directly targets ZEB1-AS1. Importantly, ZEB1-AS1 may act as an endogenous ‘sponge’ to regulate miRNA targets by competing for miR-181a-5p binding. In summary, our findings provide the evidence supporting the role of ZEB1-AS1 as an oncogene in CRC. Our study also demonstrates that miR-181a-5p targets not only protein-coding genes but also the lncRNA ZEB1-AS1.  相似文献   

17.
Cancer-secreted exosomes are critical mediators of cancer-host crosstalk. In the present study, we showed the delivery of miR-21-5p from colorectal cancer (CRC) cells to endothelial cells via exosomes increased the amount of miR-21-5p in recipient cells. MiR-21-5p suppressed Krev interaction trapped protein 1 (KRIT1) in recipient HUVECs and subsequently activated β-catenin signaling pathway and increased their downstream targets VEGFa and Ccnd1, which consequently promoted angiogenesis and vascular permeability in CRC. A strong inverse correlation between miR-21-5p and KRIT1 expression levels was observed in CRC-adjacent vessels. Furthermore, miR-21-5p expression in circulating exosomes was markedly higher in CRC patients than in healthy donors. Thus, our data suggest that exosomal miR-21-5p is involved in angiogenesis and vascular permeability in CRC and may be used as a potential new therapeutic target.Subject terms: Cancer microenvironment, Colon cancer  相似文献   

18.
化疗耐受是乳腺癌复发转移率居高不下、综合治疗效果难以提高的主要瓶颈。前期研究证实,miR-200c-3p在乳腺癌敏感细胞MCF-7中的表达量显著高于耐药细胞MCF-7/5Fu,提示miR-200c-3p可能参与乳腺癌化疗增敏,但是具体机制不详。生物信息学预测联合双荧光素酶报告基因实验证实,miR-200c-3p靶向调控FOSL1,且在多种肿瘤中miR-200c-3p与FOSL1表达负相关。实时荧光定量PCR技术和Western印迹技术证实,FOSL1在耐药细胞MCF-7/5Fu中的表达量显著高于亲本细胞MCF-7。在MCF-7细胞中,过表达FOSL1能够显著提高该细胞对5-Fu的化疗耐受;在MCF-7/5Fu中,使用siRNA技术沉默FOSL1,将提高该细胞对5-Fu的化疗敏感性。此外,MTT实验还发现,miR-200c-3p抑制剂能够显著上调MCF-7细胞对5-Fu的耐受,但是在此细胞中干扰FOSL1的表达,又可以增加其对5-Fu的化疗敏感性;miR-200c-3p mimics显著增加MCF-7/5Fu细胞的化疗敏感性,上调FOSL1表达后又可逆转miR-200c-3p mimics的化疗增敏作用。总之,miR-200-3p能够通过靶向FOSL1增加乳腺癌细胞对5-fluorouridine化疗敏感性。  相似文献   

19.
microRNAs (miRNAs) contained in small extracellular vesicles (sEVs) are candidates for non-invasive biomarkers. Oxaliplatin (L-OHP) has been approved for advanced colorectal cancer (CRC) chemotherapy. However, the response to L-OHP differs among CRC patients. In addition, CRC cells often acquire the resistance to L-OHP. This study aimed at the prediction of L-OHP sensitivity by measuring extracellular miRNAs levels. Firstly, we compared intracellular miRNAs expressions in L-OHP-sensitive CRC cells (SW620 and HCT116 cells) with those in acquired and intrinsic L-OHP-resistant cells. In microarray and real-time RT-PCR analyses, the intracellular miR-33a-5p, miR-210–3p, and miR-224–5p expressions were lower in acquired and intrinsic L-OHP-resistant CRC cells than sensitive cells. Furthermore, in SW620 cells, L-OHP sensitivity was decreased by miR-33a-5p inhibitor. On the other hand, miR-210–3p or miR-224–5p inhibitor did not affect L-OHP sensitivity in SW620 cells. Secondly, the amount of miR-33a-5p, miR-210–3p, and miR-224–5p in sEVs was compared. The amount of miR-33a-5p and miR-210–3p in sEVs secreted from acquired and intrinsic L-OHP-resistant cells tended to be small. miR-224–5p was not detected in sEVs secreted from three types of CRC cells examined. To the best of our knowledge, this is the first study demonstrating that miR-33a-5p and/or miR-210–3p in sEVs would be candidates for biomarkers of L-OHP sensitivity. In particular, miR-33a-5p is a promising candidate because it would be directly involved in L-OHP sensitivity.  相似文献   

20.
Expression of endoplasmic reticulum (ER) stress-associated genes is often dysregulated in cancer progression. ER protein 29 (ERp29) is abnormally expressed in many neoplasms and plays an important role in tumorigenesis. Here, we showed ERp29 is a novel target for microRNA-135a-5p (miR-135a-5p) to inhibit the progression of colorectal cancer (CRC); correspondingly, ERp29 acts as an oncoprotein in CRC by promoting proliferation and metastasis of CRC cells, and suppressing apoptosis of the cells. More importantly, we found that miR-135a-5p expression is reversely upregulated by ERp29 through suppressing IL-1β-elicited methylation of miR-135a-5p promoter region, a process for enterocyte to maintain a balance between miR-135a-5p and ERp29 but dysregulated in CRC. Our study reveals a novel feedback regulation loop between miR-135a-5p and ERp29 that is critical for maintaining appropriate level of each of them, but partially imbalanced in CRC, resulting in abnormal expression of miR-135a-5p and ERp29, which further accelerates CRC progression. We provide supporting evidence for ERp29 and miR-135a-5p as potential biomarkers for diagnosis and treatment of CRC.Subject terms: Cell death, Oncogenes  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号