首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In recent years, the NOTCH signaling pathway has been gradually studied in human malignancies. Inactivation of the NOTCH signaling pathway was uncovered to be correlated with the carcinogenesis of bladder cancer (BCa). Nevertheless, the specific molecular mechanism of NOTCH1 (one of the core factors of the NOTCH signaling pathway) is not well elucidated in BCa. This study focused on the mechanism by which NOTCH1 affects the biological behaviors of BCa cells. According to the experimental results of quantitative real-time polymerase chain reaction, NOTCH1 was dysregulated in BCa tissues and cell lines. The prognostic value of NOTCH1 for the patients with BCa was determined using the Kaplan-Meier method. Mechanism investigations revealed that NOTCH1 is a target of miR-34c-5p in BCa. Furthermore, microarray analysis was used to find the dysregulated long noncoding RNAs (lncRNA), which can bind with miR-34c-5p. Mechanism experiments further demonstrated the rationality of the HCG18-miR-34c-5p-NOTCH1 pathway. Functional assays were then applied to validate the inhibitory influences of NOTCH1 on the proliferation and migration of BCa cells. Furthermore, the inhibitory effects of NOTCH1 could be affected by miR-34c-5p or lncRNA HCG18. All findings in this study revealed that NOTCH1 suppresses the BCa progression by cooperating with lncRNA HCG18 and miR-34c-5p.  相似文献   

3.
Long noncoding RNAs (lncRNAs) have been showed to play a crucial role in pathogenesis and development of cardiovascular diseases. Our study aimed to study the expression and functional role of lncRNA LINC00968 in the development of coronary artery disease (CAD). We showed that the LINC00968 expression level was upregulated in the CAD tissues compared with normal arterial tissues. In addition, we showed that the expression level of LINC00968 was upregulated by oxidized low-density lipoprotein (oxLDL) treatment in endothelial cell. Ectopic expression of LINC00968 regulated the proliferation and migration of endothelial cell. Moreover, we showed that overexpression of LINC00968 inhibited miR-9-3p expression in an endothelial cell. Furthermore, we demonstrated that the miR-9-3p expression was downregulated in the CAD samples compared with normal arterial tissues and the expression level of miR-9-3p was downregulated by oxLDL treatment in endothelial cell. Finally, we showed that ectopic expression of LINC00968 promoted endothelial cell proliferation and migration partly through regulating miR-9-3p expression. These results suggested that LINC00968 plays a crucial role in the progression of the CAD.  相似文献   

4.
5.
More and more documents have proved that the abnormal expression of long noncoding RNAs (lncRNAs) are correlated with the initiation and progression of colorectal cancer (CRC). lncRNA FOXD3-AS1 has been reported in glioma for its oncogenic property. According to the survival analysis of The Cancer Genome Atlas database, FOXD3-AS1 upregulation implied lower survival rate of patients with CRC. Quantitative real-time polymerase chain reaction showed the overexpression of FOXD3-AS1 in both CRC tissues and cells. The Kaplan–Meier method demonstrated the prognostic value of FOXD3-AS1 for patients with CRC. To explore the effect of FOXD3-AS1 on CRC progression, loss-of-function experiments were carried out, whose results indicated that knockdown of FOXD3-AS1 suppressed cell proliferation, migration, and invasion, inhibited cell cycle and promoted cell apoptosis in vitro. In vivo experiments affirmed that FOXD3-AS1 affected tumor growth. FOXD3-AS1 expression was enriched in the cytoplasm of CRC cells. Mechanism experiments revealed that FOXD3-AS1 served as a competing endogenous RNA to upregulate SIRT1 by sponging miR-135a-5p. In addition, SIRT1 silencing also restrained cell proliferation and motility. Rescue assays revealed the biological function of FOXD3-AS1/miR-135a-5p/SIRT1 axis in CRC progression. In conclusion, FOXD3-AS1 promotes CRC progression by regulating miR-135a-5p/SIRT1 axis, shedding lights on the way to CRC treatments.  相似文献   

6.
7.
Long noncoding RNAs (lncRNAs) have been recognized as cancer-associated biological molecules, favoring hepatocellular carcinoma (HCC) progression. This study was conducted to elucidate the effects lncRNA lymphoid enhancer-binding Factor 1 antisense RNA (LEF1-AS1) on the pathological development of HCC, along with the crosstalk involving microRNA-136-5p (miR-136-5p) and with-no-K (lysine) kinase 1 (WNK1). The study recruited primary HCC tissues and their corresponding nonneoplastic liver tissues. The gain- and loss-of-function studies were performed in HCC cells HuH-7 and tumor xenografts in nude mice. The dual luciferase reporter gene assay system, RNA pull-down, and radioimmunoprecipitation assays were applied to detect their interactions among lncRNA LEF1-AS1, miR-136-5p, and WNK1. 5-Ethynyl-2′-deoxyuridine staining, scratch test, Transwell assays, and in vitro tube formation assays were conducted to examine HCC cell proliferation, migration, and invasion and HUVEC angiogenesis. HCC tissues and cells contained high lncRNA LEF1-AS1 expression. LncRNA LEF1-AS1 upregulation triggered markedly increased HCC cell proliferation, migration, and invasion and human umbilical vein endothelial cell angiogenesis. In vivo silencing lncRNA LEF1-AS1 resulted in reduced tumor cell vitality and matrix metalloproteinase-9 and the vascular endothelial growth factor expression. Additionally, the role of lncRNA LEF1-AS1 was found to be largely dependent on WNK1. Association of lncRNA LEF1-AS1 with WNK1 blocked the inhibitory effect of miR-136-5p on WNK1, which was confirmed by in vivo experiments. Altogether, our results revealed an important role of lncRNA LEF1-AS1 in regulating the HCC progression by regulating WNK1, providing a potential biomarker for the therapeutic modalities regarding HCC.  相似文献   

8.
It has been extensively reported that long noncoding RNAs (lncRNAs) were closely associated with multiple malignancies. The aim of our study was to investigate the effects and mechanism of lncRNA POU6F2-AS1 in lung adenocarcinoma (LADC).The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets provided us the information of LADC clinical samples. High-regulation of POU6F2-AS1 was presented in LADC tissues compared with adjacent normal tissues, which was correlated with poor outcome of LADC patients. Functional experiments in Calu-3 and NCI-H460 cells showed that POU6F2-AS1 significantly promoted LADC cell proliferation, colony formation, invasion and migration. Moreover, through online prediction, luciferase reporter assay and Pearson’s correlation analysis, we found that POU6F2-AS1 may act as a competing endogenous RNA (ceRNA) of miR-34c-5p and facilitated the expression of potassium voltage-gated channel subfamily J member 4 (KCNJ4). The promoting effect of cell aggressiveness induced by POU6F2-AS1 was enhanced by KCNJ4, whilst was abrogated due to the overexpression of miR-34c-5p. Collectively, POU6F2-AS1 might function as a ceRNA through sponging miR-34c-5p to high-regulate KCNJ4 in LADC, which indicates that POU6F2-AS1 might be a promising therapeutic target with significant prognostic value for LADC treatment.  相似文献   

9.
10.
Emerging evidence highlights the key regulatory roles of long noncoding RNAs (lncRNAs) in the initiation and progression of numerous malignancies. The lncRNA identified as differentiation antagonizing nonprotein coding RNA (DANCR) is a novel lncRNA widely involved in the development of multiple human cancers. However, the function of DANCR and its potential molecular mechanism in cervical cancer remain unclear. In this study, we discovered that DANCR was significantly elevated in cervical cancer tissues and cells, and was closely correlated with poor prognosis of cervical cancer patients. In addition, knockdown of DANCR inhibited proliferation, migration, and invasion of cervical cancer cells in vitro, indicating that DANCR functioned as an oncogene in cervical cancer. Moreover, we verified that DANCR could directly bind to miR-335-5p, isolating miR-335-5p from its target gene Rho-associated coiled-coil containing protein kinase 1 (ROCK1). Functional analysis showed that DANCR regulated ROCK1 expression by competitively binding to miR-335-5p. Further cellular behavioral experiments revealed that miR-335-5p mimics and ROCK1 knockdown reversed the effects of upregulated DANCR on proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of cervical cancer cells by rescue assays. In summary, this study demonstrated that DANCR promoted cervical cancer progression by functioning as a competing endogenous RNA (ceRNA) to regulate ROCK1 expression via sponging miR-335-5p, suggesting a novel potential therapeutic target for cervical cancer.  相似文献   

11.
Bladder cancer (BCa) is one of the most prevalent cancers of the urinary system worldwide. Accumulating evidence suggests that long noncoding RNAs (lncRNAs) perform a vital function in the pathogenesis and progression of BCa. In the current study, we identified a novel lncRNA OXCT1-AS1 and investigated its role and potential mechanisms in BCa. The microarray results showed the expression of lncRNAs, microRNAs, and messenger RNAs between BCa primary tumor tissues and metastatic lymph nodes were significantly different. The quantitative polymerase chain reaction verification was performed to ensure the reliability of the screening results. The Cell Counting Kit 8 and transwell assay were used to assess the tumor cell proliferation and invasion abilities in vitro, respectively. The dual-luciferase activity assay was performed to investigate the potential mechanism of competing endogenous RNA network. lncRNA OXCT1-AS1, which elevated in metastasis lymph node, was significantly upregulated in BCa cell lines compared with SVHUC-1. We demonstrated OXCT1-AS1 inhibited miR-455-5p to decrease its binding to the JAK1 3′-untranslated region, which could upregulate the expression of JAK1 at the protein level, thus promoting BCa proliferation and invasion. Therefore, lncRNA OXCT1-AS1 could act as a potential biomarker and therapeutic target for patients with BCa.  相似文献   

12.
13.
14.
Emerging studies have indicated that long noncoding RNAs (lncRNAs) possess various functions in initiating human cancers. However, the role of lncRNAs in hepatocellular carcinoma (HCC) still remains ill understood. In this study, we sought to investigate the role of lncRNA CACNA1G-AS1 in HCC progression. Through bioinformatics analysis, we found that CACNA1G-AS1 expression was significantly upregulated in HCC tissues compared with that in the adjacent normal tissues. Moreover, CACNA1G-AS1 upregulation indicated poor prognosis in HCC patients. Knockdown of CACNA1G-AS1 attenuated the proliferation, migration, and invasion of HCC cells. Additionally, decreased expression of CACNA1G-AS1 prevented epithelial–mesenchymal transition. In vivo assay also showed that CACNA1G-AS1 silencing HCC cells have smaller tumor volumes and weights. Further investigations demonstrated that CACNA1G-AS1 worked as a competing endogenous RNA to bind microRNA-2392 (miR-2392) and thereby alleviate the repression of the downstream target C1orf61. Collectively, CACNA1G-AS1 promotes HCC progression through regulating the miR-2392/C1orf61 pathway.  相似文献   

15.
Evidence, demonstrating long noncoding RNAs (lncRNAs) as critical players in cancer, remains to increase. lncRNA SBF2-AS1 was reported to be involved in several cancers, such as hepatocellular carcinoma. However, the role of SBF2-AS1 in colorectal cancer (CRC) is unknown. We showed lncRNA SBF2-AS1 expression was growing in CRC samples, especially in advanced cases. Accordingly, SBF2-AS1 possesses higher expression in CRC cell lines than in normal cell line. Moreover, SBF2-AS1 high expression indicated a low survival rate. Functionally, SBF2-AS1 knockdown suppressed the proliferation, migration, and invasion of CRC cells. In terms of mechanism, SBF2-AS1 upregulation restrained the activity of miR-619-5p and led to overexpression of HDAC3. Importantly, downregulation of miR-619-5p or HDAC3 overexpression reversed SBF2-AS1-silencing-caused suppression on proliferation and metastasis. Summarily, our findings elucidated a crucial role of SBF2-AS1 as a miR-619-5p sponge, shedding novel light on lncRNA-related prognostics.  相似文献   

16.
17.
Despite the fact that long noncoding RNAs (lncRNAs) play roles in almost all biological processes, little is known about their biological function in the endometrium during the formation of endometrial receptivity. In this study, a comprehensive analysis of lncRNAs in goat endometrial tissues on Day 5 (prereceptive endometrium, PE) and Day 15 (receptive endometrium, RE) of pregnancy was performed by using RNA-Seq. As a result, 668 differentially expressed lncRNAs (DELs) were found between the PE and RE. Further study showed that lncRNA882, regulated by estrogen (E2) and progestin (P4), could act as competing endogenous RNAs (ceRNAs) for miR-15b, which inhibited the expression of transforming growth factor-b-activated kinase 1 binding protein 3 (TAB3) and then indirectly regulated the level of leukemia inhibitory factor (LIF). This was helpful for the formation of endometrial receptivity in dairy goats. In conclusion, we elucidated the endometrium lncRNA profiles of PE and RE in dairy goats; lncRNA882 acted as a ceRNA for miR-15b and then indirectly regulated the level of LIF in goat endometrial epithelium cells. Thus, this study helped us to better understand the molecular regulation of endometrial receptivity in dairy goats.  相似文献   

18.
Glioma is one of the most common primary malignancies of the central nervous system, which has aggressive clinical behavior and a poorer prognosis. MicroRNAs (miRs) are a class of small noncoding RNAs that function as mediators of gene expression, which can be sponged by circRNA provided with a closed circular structure. Dysregulations of circular RNAs (circRNAs) and miRs have been implicated in the development and progression of glioma. In the current study, we investigated the role of circular RNA hsa_circ_0076248 in mediating the oncogenesis of glioma by sponging miR-181a to modulate silent information regulator 1 (SIRT1) expression in vitro and in vivo. The quantitative real-time polymerase chain reaction results showed that the expression of miR-181a was significantly decreased in glioma tissues and cell lines compared with normal brain tissues and normal gliocyte, respectively, and the expression of hsa_circ_0076248 and SIRT1 demonstrated the opposite. Bioinformatics analysis identified hsa_circ_0076248 could sponge miR-181a, and miR-181a could target the mRNA of SIRT1. Our results verified that downregulating hsa_circ_0076248 or upregulating miR-181a could depress the proliferation and invasion of glioma in vitro and in vivo. The experiment also showed that downregulating hsa_circ_0076248 or upregulating miR-181a could remarkably promote the temozolomide chemotherapy sensitivity. Furthermore, Western blot analysis testified that downregulating hsa_circ_0076248 or upregulating miR-181a could promote the expression of p53 and SIRT1. In summary, our study sheds light on the regulatory mechanism of hsa_circ_0076248 in glioma growth and invasion via sponging miR-181a, which downregulates the SIRT1 expression and also suggests that hsa_circ_0076248, miR-181a, and SIRT1 may serve as potential therapeutic targets for glioma.  相似文献   

19.
The dysregulation of long noncoding (lncRNA) UCA1 may play an important role in tumor progression. However, the function in gliomas is unclear. Therefore, this experiment was designed to explore the pathogenesis of glioma based on lncRNA UCA1. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of lncRNA UCA1, miR-135a, and HOXD9 in gliomas tissues. The effect of lncRNA UCA1 and miR-135a on tumor cell proliferation and migration invasiveness was examined by CCK-8 and transwell assays. Target gene prediction and screening, luciferase reporter assay were used to verify downstream target genes of lncRNA UCA1. Expression of E-cadherin, N-cadherin, vimentin, and HOXD9 was detected by RT-qPCR and Western blotting. The tumor changes in mice were detected by in vivo experiments in nude mice. lncRNA UCA1 was highly expressed in glioma tissues and cell lines. lncRNA UCA1 expression was associated with significantly poor overall survival in gliomas. Moreover, lncRNA UCA1 significantly enhanced cell proliferation and migration, and promoted the occurrence of EMT. In addition, lncRNA UCA1 promoted the development of EMT by positively regulating HOXD9 expression as a miR-135a sponge. In vivo experiments indicated that UCA1 exerted its biological functions by modulating miR-135a and HOXD9. In conclusion, lncRNA UCA1 can induce the activation of HOXD9 by inhibiting the expression of miR-135a and promote the occurrence of EMT in glioma.  相似文献   

20.
Long noncoding RNA (lncRNA) Linc00511 is a novel lncRNA, and it was reported to play important roles in the progression and carcinogenesis of several tumors. However, the expression and biological roles of Linc00511 in osteosarcoma were still unknown. In this research, we showed that the expression of Linc00511 was upregulated in osteosarcoma samples and cell lines. Ectopic expression of Linc00511 promoted osteosarcoma cell growth, colony formation, and migration. Moreover, overexpression of Linc00511 enhanced the epithelial-mesenchymal transition progression in osteosarcoma cell. In addition, we showed that elevated expression of Linc00511 suppressed microRNA-765 (miR-765) expression and promoted apurinic/apyrimidinic endonuclease 1 (APE1) expression in osteosarcoma cell. The expression of miR-765 was downregulated in osteosarcoma cells and samples and was negatively related to Linc00511 expression in osteosarcoma tissues. Ectopic expression of miR-765 inhibited osteosarcoma cell growth and migration. Furthermore, we showed that Linc00511 overexpression promoted MG-63 cells proliferation, colony formation, and migration via downregulation of miR-765. These results suggested that Linc00511 played as an oncogene in the development of osteosarcoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号