首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GNAO1 (guanine nucleotide-binding protein, α-activating activity polypeptide O) is a member of the subunit family of Gα proteins, which are molecular switchers controlling signal transductions and whose deregulation can promote oncogenesis. HCC (hepatocellular carcinoma) is one of the malignant tumours around the world, which summons novel biomarkers or targets for effective diagnosis and treatments. The present study was aimed to investigate the expression of GNAO1 in HCC patient tissues and the possible mechanisms by which it took effects. The expression of GNAO1 was detected by IHC (immunohistochemistry) and real-time qPCR (quantitative PCR). Cell proliferation test and cell senescence test were then performed to explore the role of GNAO1 in the occurrence and development of HCC. It was revealed that the level of GNAO1 was comparably less in HCC tissues than in the adjacent tissues. Furthermore, down-regulation of GNAO1 increased cell proliferation, while suppressing the senescence of HCC cells. In conclusion, our findings revealed and confirmed the importance of GNAO1 in HCC, indicating that GNAO1 is a potential biomarker as well as a promising therapeutic target for HCC.  相似文献   

2.
Dysregulation of microRNAs frequently contributes to the occurrence and progression of human diseases, including hepatocellular carcinoma (HCC). In this study, the role of miR-450b-3p in HCC was investigated. Gene Expression Omnibus database and HCC specimens were used to evaluate the expression level of miR-450b-3p and the patient's prognosis. Cell functional analyses and tumor xenograft model were used to assess the role of miR-450b-3p in HCC. Bioinformatics was used to predict the downstream target gene of miR-450b-3p, which was verified by dual-luciferase reporter assay. MiR-450b-3p was found to be downregulated in HCC cell lines and tissues, compared with nontransformed immortal hepatic cells and adjacent normal liver tissues, respectively. Lower expression of miR-450b-3p was associated with poor overall survival and disease-free survival in patients with HCC. Ectopic expression of miR-450b-3p inhibited HCC cell viability, colony formation, and cell-cycle progression in vitro, and suppressed the growth of HCC xenograft tumors in vivo. Interestingly, a negative correlation between miR-450b-3p and phosphoglycerate kinase 1 (PGK1) protein was observed among HCC specimens. Additionally, miR-450b-3p inhibited PGK1 expression and phosphorylation of protein kinase B in HCC cell lines. Further experiments confirmed that PGK1 was a direct target of miR-450b-3p. Moreover, restoration of PGK1 abrogated the inhibitory effect of miR-450b-3p on HCC proliferation and cell division. In conclusion, miR-450b-3p is downregulated in human HCC and exerts tumor suppressive effects at least in part by inhibiting PGK1.  相似文献   

3.
4.
5.
Esophageal squamous cell carcinoma (ESCC) is the leading pathologic type in China. miR-145 has been reported to be downregulated in multiple tumors. This study was aimed to investigate the role of miR-145 in ESCC. miR-145 expression was investigated in 65 ESCC samples as well as four ESCC cell lines by quantitative real-time polymerase chain reaction (qRT-PCR). Targetscan 6.2 website ( http://www.targetscan.org/ ) was used to predict the targets of miR-145. Expression of phospholipase C epsilon 1 (PLCE1) messenger RNA and protein was detected by qRT-PCR or Western blot. MTT and wound healing assay were conducted to explore the effects of miR-145 on the proliferation and migration of ESCC cell lines, respectively. miR-145 was significantly decreased in ESCC tissues. An inverse correlation between miR-145 and invasion depth and TNM stage were observed. PLCE1 was a direct target of miR-145, and the expression of PLCE1 was inversely correlated with miR-145 expression in ESCC tissues. In addition, overexpression of miR-145 suppressed cell proliferation and migration in ESCC cells. The enforced expression of PLCE1 partially reversed the suppressive effect of miR-145. These results prove that miR-145 may perform as a tumor suppressor in ESCC by targeting PLCE1.  相似文献   

6.
Emerging evidence have discovered that circular RNAs (circRNAs) may serve as diagnostic or tumor promising biomarkers. This study aimed to investigate how circular RNA ADAMTS14 (circADAMTS14) regulates microRNA-572/ regulator of calcineurin 1(miR-572/ RCAN1) in hepatocellular carcinoma (HCC). The expression profiles of circRNA/microRNA (mRNA) between HCC tissues and paired adjacent tissues were analyzed via microarray analysis. The expressions of circADAMTS14, miR-572, and RCAN1 were measured by real-time polymerase chain reaction (PCR). The protein expression level of RCAN1 in HCC cells was detected by western blot. The viability and apoptosis levels of HCC cell lines were measured by the cell counting Kit-8 (CCK-8) assay and fluorescence-activated cell sorter. The invasiveness and migration of cells were detected based on the transwell and wound-healing assay, respectively. The dual-luciferase reporter assays were used to reveal circADAMTS14 and RCAN1 as a potential target of miR-572, which was predicted by TargetScan and miRBase. The effect of circADAMTS14 on HCC cells was demonstrated by tumor formation in nude mice in vivo. CircADAMTS14 and RCAN1 were lowly expressed in HCC clinical specimens and cell lines using microarrays and qRT-PCR, but miR-572 inversely. Our study further verified the direct interaction between circADAMTS14 and RCAN1 with miR-572 via the dual-luciferase reporter gene assay. Overexpressed circADAMTS14 and RCAN1 induced apoptosis of HCC cells and inhibited cell proliferation and invasion. But overexpressed miR-572 could decrease apoptosis of HCC cells and promote proliferation and invasion. In vivo, circADAMTS14 inhibited the tumor growth, correlated positively with the protein expression levels of RCAN1. Our results demonstrated that circADAMTS14 might suppress HCC progression through regulating miR-572/ RCAN1 as the competing endogenous RNA.  相似文献   

7.

Background  

MiR-1 (microRNA-1) has been used as a positive control in some microRNA experiments. We found that miR-1 transfection of nasopharyngeal carcinoma cells reveals a typical apoptotic process as shown by time-lapse microscopy so we investigated the mechanisms of miR-1 inducing apoptosis.  相似文献   

8.
To explore the targeting relationship between miR-490-5p and ECT2 in hepatocellular carcinoma (HCC) and the influences of miR-490-5p and ECT2 on the stemness of HCC cells. The expressions of miR-490-5p and ECT2 in HCC tissues and adjacent tissues were identified by quantitative real-time polymerase chain reaction (qRT-PCR). The relationships between the expression levels of miR-490-5p/ ECT2 and the overall/disease-free survival (OS/DFS) of patients with HCC were evaluated using correlative curves. In addition, the targeting relationship between miR-490-5p and ECT2 was predicted by TargetScan and verified by dual-luciferase reporter assay. Plasmid transfection was used for overexpression of ECT2 in HepG2 cells, and transfection efficiency was verified by qRT-PCR. Cell Counting Kit-8 assay and cell sphere-formation assay were conducted to detect the proliferation and sphere-formation ability of HCC cells, respectively. Cell populations with different cell transfections were sorted using flow cytometry. The expression levels of proteins in the stem cell signaling pathway were determined using Western blot analysis. MiR-490-5p was remarkably downregulated, yet ECT2 was upregulated in HCC tissues compared with adjacent tissues. MiR-490-5p expression was positively correlated with OS and DFS of patients with HCC, which were otherwise negatively correlated with ECT2 expression. ECT2 was validated to be the downstream target of miR-490-5p. Overexpression of miR-490-5p restrained the sphere formation ability, stemness, and proliferation of HCC cells. MiR-490-5p repressed the stemness of HCC cells through inhibiting the expression of ECT2. MiR-490-5p may be an underlying therapeutic target in HCC treatment.  相似文献   

9.
Cancer stem cells promote tumorigenesis and progression of hepatocellular carcinoma (HCC). Recently, emerging evidence indicates tumor-associated macrophages (TAMs) play an important role in tumor progression. However, TAMs often occurs with unknown mechanisms. As an important mediator in intercellular communications, exosomes secreted by host cells mediate the exchange of genetic materials and proteins, which involves tumor aggressiveness. The aim of the study was to investigate whether exosomes derived from TAMs mediate stem cell properties in HCC. TAMs were isolated from the tissues of HCC. microRNA (miRNA) expression profiles of TAMs were analyzed using miRNA microarray. In vitro cell coculture was further conducted to investigate the crosstalk between TAMs and tumor cells mediated by TAMs exosomes. In this study, we showed that TAMs exosomes promote HCC cell proliferation and stem cell properties. Using miRNA profiles assay, we identified significantly lower levels of miR-125a and miR-125b in exosomes and cell lysate isolated from TAMs. Functional studies revealed that the HCC cells were treated with TAM exosomes or transfected with miR-125a/b suppressed cell proliferation and stem cell properties by targeting CD90, a stem cell marker of HCC stem cells. The study indicated that miR-125a/b targeting CD90 played important roles in cancer stem cells of HCC.  相似文献   

10.
Hepatocellular carcinoma (HCC) is one of the most common malignancies with extremely high rates of occurrence and death. Long noncoding RNAs (lncRNAs) have been increasingly revealed to participate in tumorigenesis and development of multiple human cancers, including HCC. LINC00961 is a novel lncRNA which has been uncovered as a tumor suppressor in lung cancer and glioma. However, the role of LINC00961 in HCC has never been probed yet. Herein, we revealed a marked downregulation of LINC00961 in HCC tissues and cell lines. Correlation of low LINC00961 expression with poor outcomes in patients with HCC suggested LINC00961 as an independent predictor for HCC prognosis. Functionally, LINC00961 overexpression obviously inhibited cell proliferation, migration, and invasion in HCC cells. Mechanistically, LINC00961 regulated cardiolipin synthase 1 (CRLS1) expression via sponging miR-5581-3p. Importantly, both miR-5581-3p upregulation and CRLS1 inhibition led to an acceleration in cellular processes in HCC cells. At length, the rescue assays suggested that LINC00961 functioned in HCC through the miR-5581-3p/CRLS1 axis. On the whole, our findings disclosed that LINC00961 played a suppressive role in HCC progression via modulating miR-5581-3p/CRLS1, thus providing a potentially effective target for the prognosis and treatment of patients with HCC.  相似文献   

11.
12.
Long noncoding RNAs (lncRNAs) have been demonstrated to play significant roles in hepatocellular carcinoma (HCC) tumor progression. LINC01433 has been implicated in the progression of lung cancer. However, its biological role in HCC remains poorly understood. In our current study, we focused on the detailed mechanism of LINC01433 in HCC development. First, it was exhibited that LINC01433 was remarkably elevated in HCC cells, which indicated that LINC01433 was involved in HCC. Then, knockdown of LINC01433 was able to restrain HCC cell proliferation and cell colony formation and greatly induced cell apoptosis. On the contrary, overexpression of LINC01433 promoted HCC cell proliferation, increased cell colony formation, and enhanced cell invasion capacity. Subsequently, we found that miR-1301 was remarkably decreased in HCC cells, and it can serve as a target of LINC01433 according to bioinformatics analysis. In addition, the binding correlation between them was validated by performing RNA pull-down experiments and RIP assay. Moreover, STAT3 was predicted and validated as a target of miR-1301, and it was shown that miR-1301 mimics significantly suppressed STAT3 in HCC cells. Finally, in vivo models were established, and the results demonstrated that silencing of LINC01433 could repress HCC development through modulating miR-1301 and STAT3. Taken together, these results indicated in our study that LINC01433 participated in HCC progression through modulating the miR-1301/STAT3 axis and it might act as a novel biomarker in HCC diagnosis and treatment.  相似文献   

13.
Accumulating evidences have proved that dysregulation of microRNAs (miRNAs) is involved in cancer initiation and progression. In this study, we showed that miRNA-145 level was significantly decreased in hepatocellular cancer (HCC) tissues and cell lines, and its low expression was inversely associated with the abundance of insulin receptor substrate 1 (IRS1), a key mediator in oncogenic insulin-like growth factor (IGF) signaling. We verified IRS1 as a direct target of miR-145 using Western blotting and luciferase reporter assay. Further, the restoration of miR-145 in HCC cell lines suppressed cancer cell growth, owing to down-regulated IRS1 expression and its downstream Akt/FOXO1 signaling. Our results demonstrated that miR-145 could inhibit HCC through targeting IRS1 and its downstream signaling, implicating the loss of miR-145 regulation may be a potential molecular mechanism causing aberrant oncogenic signaling in HCC.  相似文献   

14.
Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer that accounts for 85% of thyroid cancers. MicroRNAs (miRNAs) have been reported to play important roles in the biological processes in cancer. In this study, we analyzed the biological role of miR-4728 in human PTC process in human PTC cell lines in vitro. MiRNA-4728 was observed to down-regulated in human PTC tissues and PTC cell lines. Additionally, miR-4728 inhibited PTC cell proliferation. Further study demonstrated SOS1 was repressed by miR-4728 and overexpression of miR-4728 down-regulated both the mRNA and protein levels of SOS1. Moreover, miR-4728 overexpression also decreased the MAPK signaling activity. These observations suggested that miR-4728 could inhibit the process of human PTC through regulating MAPK signaling pathway. And, appropriate regulation of miR-4728 might be vital to improve human PTC treatment.  相似文献   

15.
16.
Recently, increasing numbers of long noncoding RNAs (lncRNAs) have been found to be aberrantly expressed in various cancers. However, the roles of lncRNAs in hepatocellular carcinoma (HCC) progression is largely unknown. In our current study, we identified that long intergenic nonprotein-coding RNA 707 (LINC00707) was remarkably elevated in HCC cells, indicating that LINC00707 was involved in HCC development. Subsequently, LINC00707 was significantly decreased in HepG2 and Huh7 cells. The in vitro functional assays demonstrated that knockdown of LINC00707 significantly reduced HCC cell proliferation, induced cell apoptosis, and blocked the cell cycle progression. In addition, HCC cell migration and invasion was also greatly inhibited by downregulation of LINC00707. Increasing evidence has indicated that lncRNAs can act as molecular sponges of microRNAs. Currently, we observed that microRNA-206 (miR-206) was dramatically inhibited in HCC cells and LINC00707 can modulate HCC development through sponging miR-206. The binding correlation between LINC00707 and miR-206 was confirmed by dual-luciferase reporter assay, RNA pull down and RNA immunoprecipitation assay in our study. Moreover, cyclin-dependent kinase 14 (CDK14) was predicted as a target of miR-206 and we found that miR-206 suppressed CDK14 levels in HCC cells. Finally, in vivo assays were used and it was proved that silence of LINC00707 can restrain HCC development through modulating miR-206 to upregulate CDK14. In conclusion, it was implied that LINC00707 can lead to HCC progression through sponging miR-206 and modulating CDK14.  相似文献   

17.
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Prognosis is often unfavorable. In this study, the effects of microRNA-802 (miR-802) on HCC progression were assessed in vivo and in vitro. miR-802 was found to be significantly upregulated in HCC tumor tissue compared to paired adjacent nontumor tissue. In vitro, transfection with a miR-802 mimic accelerated SMMC-7721 cellular proliferation, increased accumulation of the cell-cycle S-phase cell populations, as well as cell migration. In vivo injection of a miR-802 agomir promoted HCC proliferation in nude mice. Targets of miR-802 were predicted by miRWalk, miRanda, RNA22, and Targetscan. By luciferase reporter assay RUNX3 was identified as a direct target of miR-802. As judged by western blot analysis, RUNX3 was upregulated when miR-802 was inhibited. These data demonstrate increased miR-802 expression in patients with HCC and that miR-802 overexpression promotes tumor cell growth, in a RUNX3-dependent manner.  相似文献   

18.
19.
20.
Hepatocellular carcinoma (HCC) is one of the most common cancers with high prevalence and mortality, and it has brought huge economic and health burden for the world. It is urgent to found novel targets for HCC diagnosis and clinical intervention. Circular RNA (circRNA) has been reported to participate in many cancer progressions including HCC, suggesting that circRNA might paly essential role in HCC initiation and progression. Our study aims to found that potential circRNA participates in HCC development and its underlying molecular mechanisms. We obtained three pairs of HCC tissues and its adjacent normal tissues data from GEO DataSets. MTT, cell colony, EdU, wound-healing, transwell invasion and mouse xenograft model assays were used to demonstrate the biological functions of circCAMSAP1 in HCC progression. Furthermore, we conducted bioinformatics analysis, AGO2-RIP, RNA pull-down and luciferase reporter assays to assess the association of circCAMSAP1-miR-1294-GRAMD1A axis in HCC cells. The expression of circCAMSAP1 was up-regulated in HCC tissues compared with its adjacent normal tissues. Up-regulation of circCAMSAP1 promoted HCC biological functions both in vitro and in vivo. The promotive effects of circCAMSAP1 on HCC progression function through miR-1294/GRAMD1A pathway. CircCAMSAP1 was up-regulated in HCC tissues, and circCAMSAP1 up-regulated GRAMD1A expression to promote HCC proliferation, migration and invasion through miR-1294. CircCAMSAP1 might be a potential prognosis and therapeutic target for HCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号