首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is a heterogeneous group of rare illnesses that fall into the vasculitis category and are characterized mostly by blood vessel inflammation. Ischemia and disrupted blood flow will cause harm to the organs whose blood arteries become inflamed. Kawasaki disease (KD) is the most prevalent kind of vasculitis in children aged 5 years or younger. Because KD's cardiovascular problems might persist into adulthood, it is no longer thought of as a self-limiting disease. KD is a systemic vasculitis with unknown initiating factors. Numerous factors, such as genetic predisposition and infectious pathogens, are implicated in the etiology of KD. As endothelial cell damage and inflammation can lead to coronary endothelial dysfunction in KD, some studies hypothesized the crucial role of pyroptosis in the pathogenesis of KD. Additionally, pyroptosis-related proteins like caspase-1, apoptosis-associated speck-like protein containing a CARD (ASC), proinflammatory cytokines like IL-1 and IL-18, lactic dehydrogenase, and Gasdermin D (GSDMD) have been found to be overexpressed in KD patients when compared to healthy controls. These occurrences may point to an involvement of inflammasomes and pyroptotic cell death in the etiology of KD and suggest potential treatment targets. Based on these shreds of evidence, in this review, we aim to focus on one of the well-defined inflammasomes, NLRP3, and its role in the pathophysiology of KD.  相似文献   

2.
The ataxia telangiectasia-mutated and Rad3-related (ATR) serine/threonine kinase plays a central role in the repair of replication-associated DNA damage, the maintenance of S and G2/M-phase genomic stability, and the promotion of faithful mitotic chromosomal segregation. A number of stimuli activate ATR, including persistent single-stranded DNA at stalled replication folks, R loop formation, hypoxia, ultraviolet light, and oxidative stress, leading to ATR-mediated protein phosphorylation. Recently, hydrogen sulfide (H2S), an endogenous gasotransmitter, has been found to regulate multiple cellular processes through complex redox reactions under similar cell stress environments. Three enzymes synthesize H2S: cystathionine-β-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfurtransferase. Since H2S can under some conditions cause DNA damage, we hypothesized that ATR activity may regulate cellular H2S concentrations and H2S-syntheszing enzymes. Here we show that human colorectal cancer cells carrying biallelic knock-in hypomorphic ATR mutations have lower cellular H2S concentrations than do syngeneic ATR wild-type cells, and all three H2S-synthesizing enzymes show lower protein expression in the ATR hypomorphic mutant cells. Additionally, ATR serine 428 phosphorylation is altered by H2S donor and H2S synthesis enzyme inhibition, while the oxidative-stress induced phosphorylation of the ATR-regulated protein CHK1 on serine 345 is increased by H2S synthesis enzyme inhibition. Lastly, inhibition of H2S production potentiated oxidative stress-induced double-stranded DNA breaks in the ATR hypomorphic mutant compared to ATR wild-type cells. Our findings demonstrate that the ATR kinase regulates and is regulated by H2S.  相似文献   

3.
PI3K is a downstream target of multiple cell-surface receptors, which acts as a crucial modulator of both cell polarization and survival. PI3K/AKT signaling pathway is commonly involved in cancer, atherosclerosis, and other diseases. However, its role in cardiovascular diseases, especially in atherosclerosis, remains to be further investigated. To determine the effect of PI3K/AKT signaling pathway on cellular inflammatory response and oxidative stress, PI3K inhibitor (GDC0941) and AKT inhibitor (MK2206) were used. First, THP-1 cells were incubated with ox-LDL (100 µg/ml) to establish an in vitro atherosclerosis model. The inflammatory factors and foam cell formation were then evaluated to ascertain and compare the effects of PI3K and AKT inhibition. ApoE−/− mice fed a high-fat diet were used to assess the roles of PI3K and AKT in aortic plaque formation. Our results showed that the inhibition of PI3K or AKT could suppress the activation of NLRP3, decreased the expression levels of p-p65/p65 and reduced the production of mitochondrial reaction oxygen species (mitoROS) in THP-1 cells. Inhibition of PI3K or AKT could also reduced atherosclerosis lesion and plaque area, and decreased the levels of NLRP3 and IL-1β in ApoE−/− mice. The effect of PI3K inhibition was more significant than AKT. Therefore, PI3K inhibition can retard the progress of atherosclerosis. Besides, there may be other AKT-independent pathways that regulate the formation of atherosclerosis.  相似文献   

4.
In humans, two main metabolic enzymes synthesize hydrogen sulfide (H2S): cystathionine γ lyase (CSE) and cystathionine β synthase (CBS). A third enzyme, 3‐mercaptopyruvate sulfurtransferase (3‐MST), synthesizes H2S in the presence of the substrate 3‐mercaptopyruvate (3‐MP). The immunohistochemistry analysis performed on human melanoma samples demonstrated that CSE expression was highest in primary tumors, decreased in the metastatic lesions and was almost silent in non‐lymph node metastases. The primary role played by CSE was confirmed by the finding that the overexpression of CSE induced spontaneous apoptosis of human melanoma cells. The same effect was achieved using different H2S donors, the most active of which was diallyl trisulfide (DATS). The main pro‐apoptotic mechanisms involved were suppression of nuclear factor‐κB activity and inhibition of AKT and extracellular signal‐regulated kinase pathways. A proof of concept was obtained in vivo using a murine melanoma model. In fact, either l ‐cysteine, the CSE substrate, or DATS inhibited tumor growth in mice. In conclusion, we have determined that the l ‐cysteine/CSE/H2S pathway is involved in melanoma progression.  相似文献   

5.
NLRP3炎性小体研究新进展   总被引:1,自引:0,他引:1  
张懿  刘磊  刘韵资  张婷  蒋春雷 《生物磁学》2014,(9):1763-1765,1743
NLRP3炎性小体是一种分子量约为700Kda的大分子多蛋白复合体,能被多种病原相关的分子模式或损伤相关的分子模式活化,对固有免疫系统免疫功能的发挥具有极其重要的作用。但如果其被过度激活则可通过活化的半胱天冬酶-1持续地将pro-IL-1β和pro-IL-18剪切为成熟的IL-1β和IL-18,进而激活下游信号转导通路,产生大量的炎性介质,引起机体发生严重的炎症反应,最终促进多种炎症性疾病的发生与发展,如Muckle—wells综合征、2型糖尿病、非酒精性脂肪肝、动脉粥样硬化、炎症性肠病和阿尔兹海默病等。因此,对NLRP3炎性小体进行深入的研究不仅有助于阐释固有免疫系统如何有效地发挥其免疫功能,而且作为系列炎症反应的核心,NLRP3炎性小体:还可能成为多种炎症性疾病防治的新靶点。我们就NLRP3炎性小体的结构与功能,激活与调控,分布与疾病的近期研究作一综:违。  相似文献   

6.
目的:观察硫化氢(H2S)对1型糖尿病大鼠膈肌一氧化氮(NO)含量和诱导型一氧化氮合酶(iNOS)活性的影响。方法:将32只雄性SD大鼠随机分为4组:正常组(NC组)、糖尿病组(DM组)、糖尿病治疗组(DM + NaHS组)和NaHS对照组(NaHS组)(n=8)。采用一次性腹腔注射链脲佐菌素55 mg/kg制备1型糖尿病大鼠模型,造模成功后第4周起,DM + NaHS组和NaHS组大鼠腹腔注射NaHS溶液14μmol/kg干预治疗。连续注射5周后,测大鼠空腹血糖值(FBG)和膈肌重量/体重量比(DW/BW);HE染色观察膈肌显微结构变化;利用NOS分型测试盒测膈肌组织iNOS活性;硝酸还原法测定膈肌组织NO含量;利用RT-PCR和Western blot分别检测膈肌组织iNOS mRNA和蛋白表达。结果:与NC组比较,DM组大鼠FBG显著升高,膈肌显微结构损伤明显,DW/BW下降,膈肌组织iNOS活性和NO含量显著增加,iNOS mRNA和蛋白表达明显增高,NaHS组各项指标差异无统计学意义。与DM组比较,DM + NaHS组膈肌显微结构明显改善,DW/BW增高,膈肌组织iNOS活性和NO含量明显下降,iNOS mRNA和蛋白表达显著降低。结论:外源性补充H2S可能通过下调膈肌组织iNOS活性和蛋白表达,降低NO含量,进而保护糖尿病大鼠膈肌的功能。  相似文献   

7.
ObjectiveThe model of acute renal injury (AKI) induced by sepsis in rats was established by abdominal resection through surgical suture. The activation mechanism of nod-like receptor with pyrin domain containing 3 (NLRP3) inflammatory corpuscle in AKI induced by sepsis was analyzed.MethodsHere, 60 male rats were selected and divided into two groups, including sham-operated group (NO-OPs group, n = 15) and sepsis group (CELP group, n = 45). In order to examine each index of CELP group, four time points (10, 20, 30, and 40 h) were set as control. In NO-OPs group, only abdominal resection through surgical suture was carried out. The expression levels of NLRP3, apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC), caspase-1, and the expression level of NLRP3-TXNIP signaling pathway were measured by immunohistochemistry, Western blotting, immunoprecipitation, and mito-TEMPO (a mitochondria-targeted antioxidant) 40 h after operation and 10, 20, 30, and 40 h post-operation in CELP group. Herein, 40 h post-operation in NO-OPs group and 10, 20, 30, and 40 h post-operation in CELP group, peripheral blood samples were collected.ResultsCompared with NO-OPs group, the levels of serum creatinine (Scr) and blood urea nitrogen (BUN) in CELP group were increased (P < 0.05). Compared with NO-OPs group, the expression levels of interleukin-1β (IL-1β), NLRP3, ASC, and caspase-1 in CELP group were increased (P < 0.05). The expression level of TXNIP in renal tubular epithelial cells in rats was up-regulated. There was a positive correlation between TXNIP and NLRP3. The binding of NLRP3-TXNIP signaling pathway could be inhibited by siRNA transfection or mito-TMPO, and the activity of NLRP3 inflammatory bodies could be inhibited as well.ConclusionActivation of NLRP3 inflammatory corpuscles could promote AKI induced by sepsis. Simultaneously, renal injury may lead to the production of mitochondrial reactive oxygen species (mROS), which may induce the binding of TXNIP to NLRP3.  相似文献   

8.
目的:探讨内、外源性硫化氢(H2S)在脂多糖(LPS)所致大鼠急性肺损伤(ALI)中的作用并初探其机制。方法:将120只SD大鼠随机分为对照组、IPS组(经气管内滴注LPS复制ALI模型)、NaHS+LPS组和炔丙基甘氨酸(PPG)+LPS组。给药后4h或8h处死动物,测定肺系数;光镜观察肺组织形态学改变;化学法检测血浆H2S、NO和CO含量、肺组织丙二醛(MDA)含量、胱硫醚-γ-裂解酶(CSE)、诱导型一氧化氮合酶(iNOS)和血红素加氧酶(HO)活性以及支气管肺泡灌洗液(BALF)中中性粒细胞(PMN)数目和蛋白含量的变化;用免疫组织化学法检测肺组织iNOS、HO-1蛋白表达。再将血浆H2S含量与上述指标进行相关性分析。结果:气管内滴注LPS可引起肺组织明显的形态学改变;肺系数和肺组织MDA含量增加;BALF中PMN数目和蛋白含量增加;血浆H2S含量和肺组织CSE活性下降;肺组织iNOS活性、HO活性和iNOS蛋白表达、HO-1蛋白表达增强,血浆NO含量、CO含量增加。预先给予NaHS可显著减轻LPS所致上述指标的改变;而预先给予PIG可加重LPS所致肺损伤,使BALF中PMN数目和蛋白含量、血浆NO含量、肺组织iNOS活性和iNOS蛋白表达进一步增加,但对血浆CO含量、肺组织HO活性和HO-1蛋白表达无明显影响。HS含量与CSE活性、血浆CO含量、肺组织HO-1活性呈正相关(r值=0.945—0.987,P均〈0.01);与其他指标呈负相关(r值=-0.994~-0.943,P均〈0.01)。结论:H2S/CSE体系的下调在LPS所致大鼠Ⅲ的发病学中有一定作用,内、外源性H2S具有抗LPS所致Au的作用,该作用可能与其抗氧化效应、减轻PMN所致肺过度的炎症反应以及下调NO/iNOS体系、上调CO/HO—1体系有一定关系。  相似文献   

9.
目的:观察硫化氢(H2S)对糖尿病大鼠肾脏组织纤维化的影响并探讨其作用机制。方法:雄性SD大鼠随机分为正常对照(NC)组、糖尿病对照(DC)组、糖尿病+硫氢化钠(DM+NaHS)组和糖尿病+炔丙基甘氨酸(DM+PAG)组,每组8只。采用一次性腹腔注射链脲佐菌素的方法制备1型糖尿病大鼠模型。造模成功4周后,DM+NaHS组和DM+PAG组大鼠每天分别腹腔注射56 μmol/kg NaHS和40 mg/kg PAG溶液。处理4周后,测定各组大鼠空腹血糖(FBG)、尿素氮(BUN)和肌酐(SCr)水平;Masson染色观察肾脏组织胶原纤维变化,计算胶原容积分数(CVF);透射电镜观察肾脏超微结构;利用试剂盒检测肾组织白细胞介素1β(IL-1β)、白细胞介素6(IL-6)、肿瘤坏死因子α(TNF-α)和羟脯氨酸(Hyp)水平;Western blot测肾组织TGF-β1、Smad3、磷酸化Smad3(p-Smad3)和IV型胶原(col-IV)的蛋白表达水平。结果:与NC组比较,DC组FBG、BUN、SCr、CVF、IL-1β、IL-6、TNF-α和Hyp均明显增高,肾脏胶原纤维沉积、超微结构损伤明显加重,TGF-β1、Smad3、p-Smad3、p-Smad3/Smad3和col-IV表达均明显增加。与DC组比较,除FBG外,DM+NaHS组中上述指标均明显改善;而DM+PAG组中上述指标损伤均进一步加重。结论:H2S可以减轻糖尿病大鼠肾脏纤维化,其机制可能与减少促炎因子释放,下调TGF-β1/Smad3通路,抑制肾脏col-IV过量生成相关。  相似文献   

10.
This work aimed to explore the therapeutic effect and target of sulforaphene (LF) in mice with rheumatoid arthritis (RA). Lipopolysaccharide (LPS) and IFN-γ were added to induce the M1 polarization of SMG cells, and later cells were pretreated with 5 μM and 15 μM LF. M1 cell proportion was detected by flow cytometry (FCM), inflammatory factors were measured by enzyme-linked immunosorbent assay, and protein levels were analyzed by western blotting (WB) assay. Besides, small molecule-protein docking and pull-down assays were carried out to detect the binding of LF to NLRP3. After the knockdown of NLRP3 in SMG cells, the effect of LF was further detected. The RA mouse model was induced with collagen antibody and LPS, after LF intervention, H&E staining was performed to detect the pathological changes in mouse synovial membrane, whereas safranin O-fast green staining was performed to detect cartilage injury, NLRP3 inflammasome and inflammatory factor levels in tissues. LF suppressed M1 polarization of macrophages, reduced M1 cell proportion and inflammatory factor levels, and suppressed the activation of NLRP3 inflammasome. After NLRP3 knockdown, LF did not further suppress the M1 polarization of macrophages. Pull-down assay suggested that LF bound to NLRP3. As revealed by mouse experimental results, LF inhibited bone injury in mice, decreased M1 cell infiltration and inflammatory response in tissues, and inhibited NLRP3 inflammasome expression in tissues. LF targets NLRP3 to suppress the M1 polarization of macrophages and decrease tissue inflammation in RA.  相似文献   

11.
The interplay between H2S and nitric oxide (NO) is thought to contribute to renal functions. The current study was designed to assess the role of NO in mediating the renoprotective effects of hydrogen sulfide in the 5/6 nephrectomy (5/6 Nx) animal model. Forty rats were randomly assigned to 5 experimental groups: (a) Sham; (b) 5/6 Nx; (c) 5/6Nx+sodium hydrosulfide-a donor of H 2S, (5/6Nx+sodium hydrosulfide [NaHS]); (d) 5/6Nx+NaHS+ L -NAME (a nonspecific nitric oxide synthase [NOS] inhibitor); (e) 5/6Nx+NaHS+aminoguanidine (a selective inhibitor of inducible NOS [iNOS]). Twelve weeks after 5/6 Nx, we assessed the expressions of iNOS and endothelial NOS (eNOS), oxidative/antioxidant status, renal fibrosis, urine N-acetyl-b-glucosaminidase (NAG) activity as the markers of kidney injury and various markers of apoptosis, inflammation, remodeling, and autophagy. NaHS treatment protected the animals against chronic kidney injury as depicted by improved oxidative/antioxidant status, reduced apoptosis, and autophagy and attenuated messenger RNA (mRNA) expression of genes associated with inflammation, remodeling, and NAG activity. Eight weeks Nω-nitro-l-arginine methyl ester ( L -NAME) administration reduced the protective effects of hydrogen sulfide. In contrast, aminoguanidine augmented the beneficial effects of hydrogen sulfide. Our finding revealed some fascinating interactions between NO and H 2S in the kidney. Moreover, the study suggests that NO, in an isoform-dependent manner, can exert renoprotective effects in 5/6 Nx model of CKD.  相似文献   

12.
Thyroid hormones have a role in the regulation of hydrogen sulfide (H2S) biosynthesis. In this study, we determined the effects of hyperthyroidism on H2S levels in various tissues and messenger RNA (mRNA) expression of cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST) in the liver and muscles of the rat. Sixteen male Wistar rats were divided into the hyperthyroid and the control groups. Hyperthyroidism was induced by adding l -thyroxine (12 mg/L) to drinking water for a period of 21 days. H2S concentrations in serum, liver, aorta, heart, and soleus muscles, as well as mRNA expressions of CBS, CSE, and 3-MST in these tissues were measured at Day 21. Hyperthyroid rats had lower H2S levels in the serum compared with controls (14.7 ± 1.4 vs. 25.7 ± 1.6 µmol/L, p < 0.001). Compared with controls, hyperthyroid rats had lower levels of H2S in the aorta (89%), heart (80%), and soleus (103%) muscles, but higher levels in the liver (35%). Hyperthyroidism decreased the ratio of CBS/CSE mRNA expression in the liver and the CSE/CBS mRNA expression in the muscles by decreasing CBS levels in liver (34% cf. controls) and CSE levels in the aorta, heart, and soleus muscles (respectively, 51%, 7%, and 52% cf.). In addition, hyperthyroidism decreased the mRNA expression of 3-MST in the liver (51%) and aorta (33%), and increased it in the heart (300%) and soleus muscle (182%). In conclusion, hyperthyroidism increased H2S levels in the liver and decreased it in muscles; these effects are at least in part due to increases and decreases in expression of CSE in the liver and muscles, respectively. These data indicate an association between thyroid hormone status and gene expression of the H2S-producing enzymes in the rat.  相似文献   

13.
14.
Platelets play a critical role in the pathophysiology of peripheral arterial disease (PAD). The mechanisms by which muscle ischemia regulates aggregation of platelets are poorly understood. We have recently identified the Nod-like receptor nucleotide-binding domain leucine rich repeat containing protein 3 (NLRP3) expressed by platelets as a critical regulator of platelet activation and aggregation, which may be triggered by activation of toll-like receptor 4 (TLR4). In this study, we performed femoral artery ligation (FAL) in transgenic mice with platelet-specific ablation of TLR4 (TLR4 PF4) and in NLRP3 knockout (NLRP3?/?) mice. NLRP3 inflammasome activity of circulating platelets, as monitored by activation of caspase-1 and cleavage of interleukin-1β (IL-1β), was upregulated in mice subjected to FAL. Genetic ablation of TLR4 in platelets led to decreased platelet caspase 1 activation and platelet aggregation, which was reversed by the NLRP3 activator Nigericin. Two weeks after the induction of FAL, ischemic limb perfusion was increased in TLR4 PF4 and NLRP3?/? mice as compared to control mice. Hence, activation of platelet TLR4/NLRP3 signaling plays a critical role in upregulating platelet aggregation and interfering with perfusion recovery in muscle ischemia and may represent a therapeutic target to improve limb salvage.  相似文献   

15.
Long-time glucocorticoids (GCs) usage causes osteoporosis. In the present study, we explored the potential role of hydrogen sulfide (H2S) against dexamethasone (Dex)-induced osteoblast cell damage, and focused on the underlying mechanisms. We showed that two H2S-producing enzymes, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), were significantly downregulated in human osteonecrosis tissues as well as in Dex-treated osteoblastic MC3T3-E1 cells. H2S donor NaHS as well as the CBS activator S-adenosyl-l-methionine (SAM) inhibited Dex-induced viability reduction, death and apoptosis in MC3T3-E1 cells. NaHS activated adenosine monophosphate (AMP)-activated protein kinase (AMPK) signaling, which participated its cyto-protective activity. AMPK inhibition by its inhibitor (compound C) or reduction by targeted-shRNA suppressed its pro-survival activity against Dex in MC3T3-E1 cells. Further, we found that NaHS inhibited Dex-mediated reactive oxygen species (ROS) production and ATP depletion. Such effects by NaHS were again inhibited by compound C and AMPKα1-shRNA. In summary, we show that H2S inhibits Dex-induced osteoblast damage through activation of AMPK signaling. H2S signaling might be further investigated as a novel target for anti-osteoporosis treatment.  相似文献   

16.
17.
18.
目的:应用H2S供体硫氢化钠(NaHS),观察外源性H2S对中性粒细胞(PMN)在脂多糖(LPS)刺激大鼠肺内聚集的影响及其机制。方法:采用尾静脉注射致Sprague-Dawley(SD)大鼠内毒素急性肺损伤(ALI)模型,将大鼠随机分为4组(n=8~12)。对照组:由尾静脉注射无菌生理盐水(0.5ml/kg);LPS组:由尾静脉注射LPS(1mg/kg);LPS+NaHS组:注射LPS前10min腹腔注射NaHS(28μmol/kg);NaHS组:腹腔注射NaHS(28μmol/kg)。6h后光镜下观察各组大鼠肺组织学变化并计数肺泡间隔中PMN数目(number/HP);脱氧核苷酸末端转移酶介导的原位末端标记技术(TUNEL)测定支气管肺泡灌洗液(BALF)中PMN凋亡百分率及应用Western blot检测肺组织细胞间黏附分子(ICAM)-1和核转录因子(NF)-κB表达的变化。结果:注射LPS后动物肺组织出现出血、水肿及PMN聚集等病理征象。LPS组大鼠肺组织中PMN数目较对照组显著增加,PMN凋亡百分率下降,ICAM-1、NF-κB表达显著增高;应用NaHS后每高倍镜PMN数目显著减少,PMN凋亡百分率明显增高,ICAM-1、NF-κB表达显著降低,肺组织损伤减轻。单独应用NaHS组大鼠上述各项指标与对照组大鼠相比无显著差异。结论:NaHS可减少PMN在肺内聚集,其机制与其抑制NF-κB通路,从而下调ICAM-1表达、促进PMN凋亡有关。  相似文献   

19.
Li X  Du J  Jin H  Tang X  Bu D  Tang C 《Life sciences》2007,81(10):841-849
The study aimed to explore the regulatory effect of endogenous hydrogen sulfide (H(2)S), a novel gasotransmitter, on pulmonary vascular structure and gasotransmitters in rats with high pulmonary blood flow. Thirty-two Sprague-Dawley rats were randomly divided into a sham group, shunt group, sham+PPG (propargylglycine, an inhibitor of cystathionine-gamma-lyase) group and shunt+PPG group. Rats in the shunt and shunt+PPG groups underwent abdominal aorta-inferior vena cava shunting. Rats in the shunt+PPG and sham+PPG groups were intraperitoneally injected with PPG. After 4 weeks of shunting, mean pulmonary artery pressure (MPAP) and pulmonary vascular structural remodeling (PVSR) were evaluated. H(2)S, nitric oxide (NO) and carbon monoxide (CO) contents were measured in lung tissues. Meanwhile, nitric oxide synthase (eNOS), heme oxygenase (HO-1) and proliferative cell nuclear antigen (PCNA) protein expressions and ERK activation were evaluated. After 4 weeks of shunting, rats showed PVSR with increased lung tissue H(2)S and NO content but decreased CO content. After the PPG treatment, MPAP further increased and PVSR was aggravated. Meanwhile, PCNA expression and ERK activation were augmented with decreased lung tissue CO and HO-1 protein production but increased lung tissue NO production and eNOS expression. H(2)S exerted a protective effect on PVSR, and the inhibition of the NO/NOS pathway and the augmentation of the CO/HO pathway might be involved in the mechanisms by which H(2)S regulates PVSR in rats with high pulmonary flow.  相似文献   

20.
Brassinosteroids (BRs) are essential for plant growth and development; however, whether and how they promote stomatal closure is not fully clear. In this study, we report that 24‐epibrassinolide (EBR), a bioactive BR, induces stomatal closure in Arabidopsis (Arabidopsis thaliana) by triggering a signal transduction pathway including ethylene synthesis, the activation of Gα protein, and hydrogen peroxide (H2O2) and nitric oxide (NO) production. EBR initiated a marked rise in ethylene, H2O2 and NO levels, necessary for stomatal closure in the wild type. These effects were abolished in mutant bri1‐301, and EBR failed to close the stomata of gpa1 mutants. Next, we found that both ethylene and Gα mediate the inductive effects of EBR on H2O2 and NO production. EBR‐triggered H2O2 and NO accumulation were canceled in the etr1 and gpa1 mutants, but were strengthened in the eto1‐1 mutant and the cGα line (constitutively overexpressing the G protein α‐subunit AtGPA1). Exogenously applied H2O2 or sodium nitroprusside (SNP) rescued the defects of etr1‐3 and gpa1 or etr1 and gpa1 mutants in EBR‐induced stomatal closure, whereas the stomata of eto1‐1/AtrbohF and cGα/AtrbohF or eto1‐1/nia1‐2 and cGα/nia1‐2 constructs had an analogous response to H2O2 or SNP as those of AtrbohF or Nia1‐2 mutants. Moreover, we provided evidence that Gα plays an important role in the responses of guard cells to ethylene. Gα activator CTX largely restored the lesion of the etr1‐3 mutant, but ethylene precursor ACC failed to rescue the defects of gpa1 mutants in EBR‐induced stomatal closure. Lastly, we demonstrated that Gα‐activated H2O2 production is required for NO synthesis. EBR failed to induce NO synthesis in mutant AtrbohF, but it led to H2O2 production in mutant Nia1‐2. Exogenously applied SNP rescued the defect of AtrbohF in EBR‐induced stomatal closure, but H2O2 did not reverse the lesion of EBR‐induced stomatal closure in Nia1‐2. Together, our results strongly suggest a signaling pathway in which EBR induces ethylene synthesis, thereby activating Gα, and then promotes AtrbohF‐dependent H2O2 production and subsequent Nia1‐catalyzed NO accumulation, and finally closes stomata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号