首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chinese herbal medicine Fructus Cnidii has an outstanding effect on chronic lumbar pain and impotence, also has been used against osteoporosis with high frequency. Yet, the mechanisms of osthole, a derivative of Fructus Cnidii, on osteoclasts remains barely known. In this study, it was found out that osthole (10−6mol/L, 10−5mol/L) had the influence of inhibiting osteoclast formation and bone resorptive activities induced by receptor activator of nuclear factor κB ligand (RANKL), rather than affecting the viability of osteoclast-like cells. Furthermore, osthole could also inhibit the messenger RNA expressions of c-Src, tartrate-resistant acid phosphatase, β3-Integrin, matrix metallopeptidase 9, and cathepsin K. The results of the mechanistic study indicated that osthole regulated the nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) and nuclear factor-κB (NF-κB) activations following the RANKL stimulation. These findings suggested that the inhibitory effects of osthole were associated with restraining the activations of NFATc1 and NF-κB induced by RANKL. Thus osthole can be used as a potential treatment for abnormal bone-resorption related diseases.  相似文献   

2.
The effect of beta-cryptoxanthin, which is greatly present in fruits, has not been clarified so far on bone metabolism. The effect of beta-cryptoxanthin on bone formation and bone resorption was investigated in tissue culture in vitro. Rat femoral-diaphyseal (cortical bone) and -metaphyseal (trabecular bone) tissues were cultured for 48 h in Dulbecco's modified Eagle's medium (high glucose, 4.5%) supplemented with antibiotics and bovine serum albumin. The experimental cultures contained 10(-8)-10(-5) M beta-cryptoxanthin. The presence of beta-cryptoxanthin (10(-6) or 10(-5) M) caused a significant increase in calcium content, alkaline phosphatase activity and deoxyribonucleic acid (DNA) content in the diaphyseal and metaphyseal tissues. These increases were completely prevented in the presence of cycloheximide (10(-6) M), an inhibitor of protein synthesis. beta-Carotene (10(-6) or 10(-5) M) or xantine (10(-6) or 10(-5) M) had no effect on the diaphyseal and metaphyseal calcium contents. The bone-resorbing factors parathyroid hormone (1-34) (PTH; 10(-7) M) or prostaglandin E2 (PGE2; 10(-5) M) caused a significant decrease in calcium content in the diaphyseal and metaphyseal tissues. The decrease in bone calcium content induced by PTH or PGE2 was completely inhibited by beta-cryptoxanthin (10(-8)-10(-6) M). In addition, beta-cryptoxanthin (10(-8)-10(-6) M) completely inhibited the PTH (10(-7) M)- or PGE, (10(-5) M)-induced increase in medium glucose consumption and lactic acid production by diaphyseal and metaphyseal tissues. The inhibitory effect of beta-cryptoxanthin (10(-7) M) on PTH (10(-7) M)- or PGE2 (10(-5) M)-stimulated decrease in the diaphyseal calcium content was significantly prevented in the presence of 10(-3) M vanadate, an inhibitor of protein tyrosine phosphatase. Vanadate (10(-3) M) did not have a significant effect on calcium content and lactic acid production in control bone tissues. The present study demonstrates that beta-cryptoxanthin has a direct stimulatory effect on bone formation and an inhibitory effect on bone resorption in tissue culture in vitro.  相似文献   

3.
Sanguinarine is a natural plant extract that has been supplemented in a number of gingival health products to suppress the growth of dental plaque. However, whether sanguinarine has any effect on teeth and alveolar bone health is still unclear. In this study, we demonstrated for the first time that sanguinarine could suppress osteoclastic bone resorption and osteoclast formation in a dose-dependent manner. Sanguinarine diminished the expression of osteoclast marker genes, including TRAP, cathepsin K, calcitonin receptor, DC-STAMP, V-ATPase d2, NFATc1 and c-fos. Further investigation revealed that sanguinarine attenuated RANKL-mediated IκBα phosphorylation and degradation, leading to the impairment of NF-κB signaling pathway during osteoclast differentiation. In addition, sanguinarine also affected the ERK signaling pathway by inhibiting RANKL-induced ERK phosphorylation. Collectively, this study suggested that sanguinarine has protective effects on teeth and alveolar bone health.  相似文献   

4.
Pathological bone destruction (osteolysis) is a hallmark of many bone diseases including tumor metastasis to bone, locally osteolytic giant cell tumor (GCT) of bone, and Paget's disease. Paclitaxel is frequently prescribed in the treatment of several malignant tumors where it has been shown to exert beneficial effects on bone lesions. However, the mechanism(s) through which paclitaxel regulates osteoclast formation and function remain ill defined. In the present study, we demonstrate that paclitaxel dose-dependently inhibits receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis in both RAW264.7 cells and mouse bone marrow macrophage (BMM) systems. In addition, paclitaxel treatment reduces the bone resorptive activity of human osteoclasts derived from GCT of bone, and attenuates lipopolysaccharide (LPS)-induced osteolysis in a mouse calvarial model. Complementary cellular and biochemical analyses revealed that paclitaxel induces mitotic arrest of osteoclastic precursor cells. Furthermore, luciferase reporter gene assays and western blot analysis indicate that paclitaxel modulates key RANKL-induced activation pathways that are essential to osteoclast formation including NF-κB and ERK. Collectively, our findings demonstrate a role for paclitaxel in the regulation of osteoclast formation and function and uncover potential mechanism(s) through which paclitaxel alleviates pathological osteolysis.  相似文献   

5.
microRNAs (miRNAs) are non-coding small RNAs regulating gene expression, cell growth, and differentiation. Although several miRNAs have been implicated in cell growth and differentiation, it is barely understood their roles in adipocyte differentiation. In the present study, we reveal that miR-27a is involved in adipocyte differentiation by binding to the PPARγ 3′-UTR whose sequence motifs are highly conserved in mammals. During adipogenesis, the expression level of miR-27a was inversely correlated with that of adipogenic marker genes such as PPARγ and adiponectin. In white adipose tissue, miR-27a was more abundantly expressed in stromal vascular cell fraction than in mature adipocyte fraction. Ectopic expression of miR-27a in 3T3-L1 pre-adipocytes repressed adipocyte differentiation by reducing PPARγ expression. Interestingly, the level of miR-27a in mature adipocyte fraction of obese mice was down-regulated than that of lean mice. Together, these results suggest that miR-27a would suppress adipocyte differentiation through targeting PPARγ and thereby down-regulation of miR-27a might be associated with adipose tissue dysregulation in obesity.  相似文献   

6.
Vitamin E, an essential nutrient with powerful antioxidant activity, is the mixture of two classes of compounds, tocopherols (TPs) and tocotrienols (TTs). Although TTs exhibit better bone protective activity than α-TP, the underlying mechanism is poorly understood. In this study, we investigated whether α-TT and α-TP can modulate osteoclastic bone resorption. We found that α-TT but not α-TP inhibits osteoclastogenesis in coculture of osteoblasts and bone marrow cells induced by either IL-1 or combined treatment with 1α,25(OH)2 vitamin D3 and prostaglandin E2. In accordance with this, only α-TT inhibited receptor activator of NF-κB ligand (RANKL) expression in osteoblasts. In addition, α-TT but not α-TP inhibited RANKL-induced osteoclast differentiation from precursors by suppression of c-Fos expression, possibly through inhibiting ERK and NF-κB activation. This anti-osteoclastogenic effect was reversed when c-Fos or an active form of NFATc1, a critical downstream of c-Fos during osteoclastogenesis, was overexpressed. Furthermore, only α-TT reduced bone resorbing activity of mature osteoclasts without affecting their survival. Overall, our results demonstrate that α-TT but not α-TP has anti-bone resorptive properties by inhibiting osteoclast differentiation and activation, suggesting that α-TT may have therapeutic value for treating and preventing bone diseases characterized by excessive bone destruction.  相似文献   

7.
8.
Fatty acid binding protein 4 (FABP4) is a novel tumor regulator that is abnormally expressed in many human cancers. In our study, upregulated microRNA-211 (miR-211) and reduced FABP4 expression were detected in colorectal cancer (CRC) patients and CRC cells. Mimic miR-211 or anti-miR-211 were transfected to investigate the effects of miR-211 on SW480 cells. The results showed that miR-211 promoted but anti-miR-211 inhibited cell migration, invasion, and epithelial–mesenchymal transition (EMT) of SW480 cells. Luciferase activity was decreased after cotransfection with miR-211 and WT-FABP4-UTR in SW480 cells. And reduced FABP4 protein expression by miR-211 indicated that FABP4 was the targeted gene of miR-211. miR-211 inhibited the activation of peroxisome proliferator-activated receptor (PPAR) γ, whereas overexpression of FABP4 reversed that effect. Finally, FABP4 inhibited the migration, invasion, and EMT of SW480 cells, whereas PPARγ agonist reversed the effects of FABP4. Thus, the miR-211/FABP4/PPARγ axis may be a novel target for CRC therapy.  相似文献   

9.
10.
11.
12.
This study was conducted to examine the relationship between the peroxisome proliferator-associated receptor-γ (PPARγ) and MUC1 mucin, two anti-inflammatory molecules expressed in the airways. Treatment of A549 lung epithelial cells or primary mouse tracheal surface epithelial (MTSE) cells with phorbol 12-myristate 13-acetate (PMA) increased the levels of tumor necrosis factor (TNF)-α in cell culture media compared with cells treated with vehicle alone. Overexpression of MUC1 in A549 cells decreased PMA-stimulated TNF-α levels, whereas deficiency of Muc1 expression in MTSE cells from Muc1 null mice increased PMA-induced TNF-α levels. Treatment of A549 or MTSE cells with the PPARγ agonist troglitazone (TGN) blocked the ability of PMA to stimulate TNF-α levels. However, the effect of TGN required the presence of MUC1/Muc1, since no differences in TNF-α levels were seen between PMA and PMA plus TGN in MUC1/Muc1-deficient cells. Similarly, whereas TGN decreased interleukin-8 (IL-8) levels in culture media of MUC1-expressing A549 cells treated with Pseudomonas aeruginosa strain K (PAK), no differences in IL-8 levels were seen between PAK and PAK plus TGN in MUC1-nonexpressing cells. EMSA confirmed the presence of a PPARγ-binding element in the MUC1 gene promoter. Finally, TGN treatment of A549 cells increased MUC1 promoter activity measured using a MUC1-luciferase reporter gene, augmented MUC1 mRNA levels by quantitative RT-PCR, and enhanced MUC1 protein expression by Western blot analysis. These combined data are consistent with the hypothesis that PPARγ stimulates MUC1/Muc1 expression, thereby blocking PMA/PAK-induced TNF-α/IL-8 production by airway epithelial cells.  相似文献   

13.
14.
Ang ES  Yang X  Chen H  Liu Q  Zheng MH  Xu J 《FEBS letters》2011,585(17):2755-2762
Osteolytic bone diseases including osteoporosis are commonly accompanied with enhanced osteoclast formation and bone resorption. Naringin, a natural occurring flavonoid has been found to protect against retinoic acid-induced osteoporosis and improve bone quality in rats. Here, we showed that naringin perturbs osteoclast formation and bone resorption by inhibiting RANK-mediated NF-κB and ERK signaling. Naringin suppressed gene expression of key osteoclast marker genes. Naringin was found to inhibit RANKL-induced activation of NF-κB by suppressing RANKL-mediated IκB-α degradation. In addition, naringin inhibited RANKL-induced phosphorylation of ERK. This study identifies naringin as an inhibitor for osteoclast formation and bone resorption, and provides evidence that natural compounds such as naringin might be beneficial as an alternative medicine for the prevention and treatment of osteolysis.  相似文献   

15.
During osteoporosis, the shift of bone mesenchymal stem cell (BMSC) lineage commitment to adipocyte leads to the imbalance between bone mass and fat, which increases the risk of fracture. The mechanism underlying this process is not fully understood. Fat mass and obesity-associated protein (FTO) is an RNA demethylase that demethylates various methylated nucleic acids and participates in various physiological and pathological processes. Here we identified FTO as a regulator for BMSC fate determination during osteoporosis. FTO was up-regulated in bone marrow during aging or osteoporosis in human and mice in a GDF11(growth differentiation factor 11)-C/EBPα-dependent mechanism. The expression of FTO was also up-regulated during adipocyte differentiation of BMSCs whereas its expression was down-regulated during osteoblast differentiation. Gain-of-function and loss-of-function experiments showed that FTO favored the BMSCs to differentiate to adipocytes rather than osteoblasts. Further mechanism study demonstrated that FTO bound and demethylated the mRNA of the Peroxisome proliferator-activated receptor gamma (Pparg), leading to the increase in the expression of Pparg mRNA. Reversely, Pparg knockdown blocked the function of GDF11-FTO during osteoblast differentiation of BMSCs. Furthermore, conditionally genetic knockout of Fto in osteoblasts inhibited the development of osteopenia in mice. Collectively, our findings demonstrated that GDF11-FTO-Pparg axis promoted the shift of osteoporotic BMSC fate to adipocyte and inhibited bone formation during osteoporosis.  相似文献   

16.
The effects of estradiol-17β (E2) on bone resorption and formation as well as its effects on scale resorption were investigated in rainbow trout in order to elucidate the role of the hormone in calcium mobilization from calcified tissues, and to clarify the importance of scale and bone as calcium reserves during sexual maturation. Furthermore, the effects of nutritional status on calcified tissues and E2-induced calcium mobilization were studied. In fed as well as fasted rainbow trout, E2 treatment increased scale osteoclastic activity measured as tartrate-resistant acid phosphatase activity, and reduced scale calcium content, suggesting that E2 increases scale resorption in both the fed and fasted fish. Using histomorphometry, E2 treatment was found to decrease pharyngeal bone resorption in fed, but not in fasted rainbow trout. The E2 effect on rainbow trout bone is consistent with its physiological role in mammals and birds where E2 has been reported to decrease bone resorption. It appears therefore that rainbow trout protect their skeleton and instead use scales as a source of calcium during E2-induced calcium mobilization. The formation of pharyngeal bone was decreased by fasting, and the importance of the nutritional status for the activity of the bone cells in rainbow trout is therefore emphasized. Accepted: 8 May 1997  相似文献   

17.
18.
19.
20.
A comparison was made of the fatty acid composition in the liver for various sizes of squid (Illex argentinus).The proportion of 14:0, 16:0, 16:1 n-7, and 18:1 n-9 increased, while that of 18:0, 20:4 n-6, and 22:6 n-3 decreased with increasing liver weight. The proportion of 20:5 n-3 was found to be almost constant for any size of liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号