首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigates the apoptotic activity of the cyclooxygenase-2 (COX-2) inhibitor celecoxib in prostate carcinoma cells. COX-2 is constitutively expressed in androgen-responsive LNCaP and androgen-nonresponsive PC-3 cells. Exposure of these cells to celecoxib induces characteristic features of apoptosis, including morphological changes, DNA laddering, and caspase-3 activation, whereas piroxicam, a COX-1-specific inhibitor, displays no appreciable effect on either cancer cell line even after prolonged exposure. Moreover, the potency of celecoxib in apoptosis induction is significantly higher than that of other COX-2 inhibitors examined despite the observation that these inhibitors exhibit similar IC(50) in COX-2 inhibition. It is noteworthy that normal human prostate epithelial cells, expressing a marginally detectable level of COX-2, are insensitive to the induction of apoptosis by celecoxib. These data suggest a correlation between COX-2 expression and sensitivity to the apoptotic effect of the COX-2 inhibitor. In an effort to delineate the underlying mechanism, we examined the effect of celecoxib on the expression of Bcl-2 as well as the activation of the key anti-apoptotic kinase Akt. In contrast to an earlier report that attributed the apoptotic activity of NS398 in LNCaP cells to Bcl-2 down-regulation, we provide evidence that the induction of apoptosis by celecoxib in LNCaP and PC-3 cells is independent of Bcl-2. First, treatment with celecoxib does not alter the cellular Bcl-2 level in both cell lines. Second, enforced Bcl-2 expression in PC-3 cells does not confer protection against the induction of apoptosis by celecoxib. Our data show that celecoxib treatment blocks the phosphorylation of Akt. This correlation is supported by studies showing that overexpression of constitutively active Akt protects PC-3 cells from celecoxib-induced apoptosis. Nevertheless, how celecoxib down-regulates Akt is not clear because the drug does not adversely affect phosphoinositide 3-kinase activity in vivo and okadaic acid, a protein phosphatase 2A inhibitor, cannot rescue the inhibition. In summary, our data demonstrate that inhibition of Akt activation may play a crucial role in the induction of apoptosis by celecoxib.  相似文献   

2.
Cyclooxygenase-2 (COX-2), a key enzyme in arachidonic acid metabolism, is overexpressed in many cancers. Inhibition of COX-2 by nonsteroidal anti-inflammatory drugs (NSAIDs) reduces the risk of cancer development in humans and suppresses tumor growth in animal models. The anti-cancer effect of NSAIDs seems to involve suppression of tumor angiogenesis, but the underlying mechanism is not completely understood. Integrin alpha V beta 3 is an adhesion receptor critically involved in mediating tumor angiogenesis. Here we show that inhibition of endothelial-cell COX-2 by NSAIDs suppresses alpha V beta 3-dependent activation of the small GTPases Cdc42 and Rac, resulting in inhibition of endothelial-cell spreading and migration in vitro and suppression of fibroblast growth factor-2-induced angiogenesis in vivo. These results establish a novel functional link between COX-2, integrin alpha V beta 3 and Cdc42-/Rac-dependent endothelial-cell migration. Moreover, they provide a rationale to the understanding of the anti-angiogenic activity of NSAIDs.  相似文献   

3.
Angiogenesis, the formation of new capillary blood vessels, is essential not only for the growth and metastasis of solid tumors, but also for wound and ulcer healing, because without the restoration of blood flow, oxygen and nutrients cannot be delivered to the healing site. Nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin, indomethacin and ibuprofen are the most widely used drugs for pain, arthritis, cardiovascular diseases and, more recently, the prevention of colon cancer and Alzheimer disease. However, NSAIDs produce gastroduodenal ulcers in about 25% of users (often with bleeding and/or perforations) and delay ulcer healing, presumably by blocking prostaglandin synthesis from cyclooxygenase (COX)-1 and COX-2 (ref. 10). The hypothesis that the gastrointestinal side effects of NSAIDs result from inhibition of COX-1, but not COX-2 (ref. 11), prompted the development of NSAIDs that selectively inhibit only COX-2 (such as celecoxib and rofecoxib). Our study demonstrates that both selective and nonselective NSAIDs inhibit angiogenesis through direct effects on endothelial cells. We also show that this action involves inhibition of mitogen-activated protein (MAP) kinase (ERK2) activity, interference with ERK nuclear translocation, is independent of protein kinase C and has prostaglandin-dependent and prostaglandin-independent components. Finally, we show that both COX-1 and COX-2 are important for the regulation of angiogenesis. These findings challenge the premise that selective COX-2 inhibitors will not affect the gastrointestinal tract and ulcer/wound healing.  相似文献   

4.
Treatment of osteoarthritis (OA) with nonsteroidal anti-inflammatory drugs (NSAIDs) diminishes inflammation along with mediators of cartilage destruction. However, NSAIDs may exert adverse direct effects on cartilage, particularly if treatment is prolonged. We therefore compared the direct effects of indomethacin, naproxen, aceclofenac and celecoxib on matrix turnover in human OA cartilage tissue. Human clinically defined OA cartilage from five different donors was exposed for 7 days in culture to indomethacin, naproxen, aceclofenac and celecoxib – agents chosen based on their cyclo-oxygenase (COX)-2 selectivity. As a control, SC-560 (a selective COX-1 inhibitor) was used. Changes in cartilage proteoglycan turnover and prostaglandin E2 production were determined. OA cartilage exhibited characteristic proteoglycan turnover. Indomethacin further inhibited proteoglycan synthesis; no significant effect of indomethacin on proteoglycan release was found, and proteoglycan content tended to decrease. Naproxen treatment was not associated with changes in any parameter. In contrast, aceclofenac and, prominently, celecoxib had beneficial effects on OA cartilage. Both were associated with increased proteoglycan synthesis and normalized release. Importantly, both NSAIDs improved proteoglycan content. Inhibition of prostaglandin E2 production indirectly showed that all NSAIDs inhibited COX, with the more COX-2 specific agents having more pronounced effects. Selective COX-1 inhibition resulted in adverse effects on all parameters, and prostaglandin E2 production was only mildly inhibited. NSAIDs with low COX-2/COX-1 selectivity exhibit adverse direct effects on OA cartilage, whereas high COX-2/COX-1 selective NSAIDs did not show such effects and might even have cartilage reparative properties.  相似文献   

5.
6.
Gastrointestinal (GI) Adverse Drug Reactions (ADRs) from the NSAIDs are a major cause of morbidity and mortality in arthritic patients taking these drugs. The recent much heralded development of COX-2 selective drugs (celecoxib, rofecoxib), the objective of which has been to spare inhibition of the production of COX-1 derived mucosal protective prostaglandins, may have represented an advance in reducing the risk of serious ADRs--ulcers and bleeding--but does not appear to have reduced the incidence of symptomatic side-effects (nausea, vomiting, epigastric pain/heartburn, abdominal discomfort) which are a major reason for withdrawal from NSAID therapy, especially in the long term. The rationale of COX-2 selectivity from these newer drugs is controversial since there may be pharmacokinetic differences from established carboxylate-NSAIDs that accounts for their apparent lower ulcerogenicity. Moreover, concerns have been recently expressed that as COX-2 is important in ulcer healing, control of prostacyclin production and renal function that they may have adverse reactions from these effects. Indeed, recent reports of enhanced risk of congestive heart failure with rofecoxib are of importance and may relate to impaired prostacyclin production. Moreover, there are other therapeutic strategies that have yielded equally low ulcerogenic NSAIDs (e.g. the prodrug, nabumetone; the established COX-2 inhibitory drug, nimesulide) and even the well-established NSAIDs ibuprofen and diclofenac have relatively low upper GI ulcerogenicity and have been used as benchmark standards in comparative trials of the newer "Oxib" drugs (celecoxib, rofecoxib). Much research interest has centred on the nitric oxide-donating NSAIDs (NO-NSAIDs). The rationale for donating NSAIDs being to counteract the vasoconstriction effects of NSAIDs but this has yet to be fully evaluated. It is not certain that this "antidote" approach will be acceptable as there may also be systemic effects of the nitrobutoxyl--or other NO-donors that may have toxicological consequences. Another strategy is the development of mixed COX-5 lipoxygenase (LOX) inhibitors--the progenitors of which were benoxaprofen and BW-755C. The rationale of reducing the potential for lipoxygenase mediated actions in the stomach (e.g. vasoconstriction, leucocyte accumulation). Clearly, the need to develop newer NSAIDs with lower risks of ulcers and bleeding as well as symptomatic ADRs is still representing a major challenge.  相似文献   

7.
Treatment of osteoarthritis (OA) with nonsteroidal anti-inflammatory drugs (NSAIDs) diminishes inflammation along with mediators of cartilage destruction. However, NSAIDs may exert adverse direct effects on cartilage, particularly if treatment is prolonged. We therefore compared the direct effects of indomethacin, naproxen, aceclofenac and celecoxib on matrix turnover in human OA cartilage tissue. Human clinically defined OA cartilage from five different donors was exposed for 7 days in culture to indomethacin, naproxen, aceclofenac and celecoxib--agents chosen based on their cyclo-oxygenase (COX)-2 selectivity. As a control, SC-560 (a selective COX-1 inhibitor) was used. Changes in cartilage proteoglycan turnover and prostaglandin E2 production were determined. OA cartilage exhibited characteristic proteoglycan turnover. Indomethacin further inhibited proteoglycan synthesis; no significant effect of indomethacin on proteoglycan release was found, and proteoglycan content tended to decrease. Naproxen treatment was not associated with changes in any parameter. In contrast, aceclofenac and, prominently, celecoxib had beneficial effects on OA cartilage. Both were associated with increased proteoglycan synthesis and normalized release. Importantly, both NSAIDs improved proteoglycan content. Inhibition of prostaglandin E2 production indirectly showed that all NSAIDs inhibited COX, with the more COX-2 specific agents having more pronounced effects. Selective COX-1 inhibition resulted in adverse effects on all parameters, and prostaglandin E2 production was only mildly inhibited. NSAIDs with low COX-2/COX-1 selectivity exhibit adverse direct effects on OA cartilage, whereas high COX-2/COX-1 selective NSAIDs did not show such effects and might even have cartilage reparative properties.  相似文献   

8.
Osteoarthritis (OA) is a degenerative joint disease characterized by progressive loss of articular cartilage, subchondral bone sclerosis, osteophyte formation, and synovial inflammation, causing substantial physical disability, impaired quality of life, and significant health care utilization. Traditionally, non-steroidal anti-inflammatory drugs (NSAIDs), including selective cyclooxygenase (COX)-2 inhibitors, have been used to treat pain and inflammation in OA. Besides its anti-inflammatory properties, evidence is accumulating that celecoxib, one of the selective COX-2 inhibitors, has additional disease-modifying effects. Celecoxib was shown to affect all structures involved in OA pathogenesis: cartilage, bone, and synovium. As well as COX-2 inhibition, evidence indicates that celecoxib also modulates COX-2-independent signal transduction pathways. These findings raise the question of whether celecoxib, and potentially other coxibs, is more than just an anti-inflammatory and analgesic drug. Can celecoxib be considered a disease-modifying osteoarthritic drug? In this review, these direct effects of celecoxib on cartilage, bone, and synoviocytes in OA treatment are discussed.  相似文献   

9.
Alzheimer disease (AD) is characterized by cerebral deposits of beta-amyloid (Abeta) peptides, which are surrounded by neuroinflammatory cells. Epidemiological studies have shown that prolonged use of non-steroidal anti-inflammatory drugs (NSAIDs) reduces the risk of developing AD. In addition, biological data indicate that certain NSAIDs specifically lower Abeta42 levels in cultures of peripheral cells independently of cyclooxygenase (COX) activity and reduce cerebral Abeta levels in AD transgenic mice. Whether other NSAIDs, including COX-selective compounds, modulate Abeta levels in neuronal cells remains unexploited. Here, we investigated the effects of compounds from every chemical class of NSAIDs on Abeta40 and Abeta42 secretion using both Neuro-2a cells and rat primary cortical neurons. Among non-selective NSAIDs, flurbiprofen and sulindac sulfide concentration-dependently reduced the secretion not only of Abeta42 but also of Abeta40. Surprisingly, both COX-2 (celecoxib; sc-125) or COX-1 (sc-560) selective compounds significantly increased Abeta42 secretion, and either did not alter (sc-560; sc-125) or reduced (celecoxib) Abeta40 levels. The levels of betaAPP C-terminal fragments and Notch cleavage were not altered by any of the NSAIDs, indicating that gamma-secretase activity was not overall changed by these drugs. The present findings show that only a few non-selective NSAIDs possess Abeta-lowering properties and therefore have a profile potentially relevant to their clinical use in AD.  相似文献   

10.
Cyclooxygenase is the key enzyme in the biosynthesis of prostanoids, biologically active substances involved in several physiological processes and also in pathological conditions such as inflammation. It has been well known for 10 years that this enzyme exists under two forms: a constitutive (COX-1) and an inducible form (COX-2). Both enzymes are sensitive to inhibition by conventional non-steroidal anti-inflammatory drugs (NSAIDs). Observations were made that COX-1 was mainly involved in homeostatic processes, while the COX-2 expression was associated with pathological conditions leading to the development of COX-2 selective inhibitors. Several methods have been reported for the evaluation of the COX-1 and COX-2 inhibitory potency and selectivity of conventional or COX-2 selective NSAIDs. In this study, we evaluated the COXs inhibitory profile of both conventional NSAIDs and COX-2 selective inhibitors using two different in vitro methods: the first test was performed using purified enzymes while the second method consisted of a whole blood assay. The results obtained with reference drugs in these two assays will be discussed and compared in this article.  相似文献   

11.
Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit the function of cyclooxygenases, COX-1 and COX-2, which catalyze the first step in the synthesis of inflammatory mediators (PGE2). We sought to understand the roles of cyclooxygenases and NSAIDs in T-cell development. Our data show no significant defects in T-cell development in fetal thymic organ cultures of mice disrupted in both or either COX genes or in mice disrupted in either EP-1 or EP-2 receptor genes. On the other hand, NSAIDs reproducibly caused thymocyte developmental defects. However, the specific effects of the COX-2 inhibitors were not correlated with their potency for inhibition of COX-2 activity. We focused on the NS-398 COX-2 inhibitor and showed that its effects could not be reversed by exogenous PGE2. Furthermore, NS-398 was inhibitory even when its target, COX-2, was absent. These data show that the T-cell developmental effects of NS-398 are COX-2 and PGE2 independent.  相似文献   

12.
The cyclooxygenases (COX-1 and COX-2) are membrane-associated, heme-containing homodimers that generate prostaglandin H2 from arachidonic acid (AA) in the committed step of prostaglandin biogenesis and are the targets for nonsteroidal anti-inflammatory drugs (NSAIDs). N-(2-cyclohexyloxy-4-nitrophenyl) methanesulfonamide (NS-398) was the first in a series of isoform-selective drugs designed to preferentially inhibit COX-2, with the aim of ameliorating many of the toxic gastrointestinal side effects caused by conventional NSAID inhibition. We determined the X-ray crystal structure of murine COX-2 in complex with NS-398 utilizing synchrotron radiation to 3.0 A resolution. NS-398 binds in the cyclooxygenase channel in a conformation that is different than that observed for other COX-2-selective inhibitors, such as celecoxib, with no discernible penetration into the side pocket formed in COX-2 by the isoform-specific substitutions of I434V, H513R, and I523V. Instead, the methanesulfonamide moiety of NS-398 interacts with the side chain of Arg-120 at the opening of the cyclooxygenase channel, similar to that observed for acidic, nonselective NSAIDs such as indomethacin and flurbiprofen. Our structure validates inhibitor studies that identified Arg-120 as a molecular determinant for time-dependent inhibition of COX-2 by NS-398.  相似文献   

13.
Epidemiological, clinical and animal studies indicate non-steroidal anti-inflammatory drugs (NSAIDs) to be chemopreventive for colorectal cancer. The best established target for NSAIDs are the two isoforms of cyclooxygenase (COX), a key enzyme in the biosynthesis of prostaglandins. Recent investigations using human colorectal tumor cell lines have focused on the cellular and molecular mechanisms potentially underlying the chemopreventive effect of NSAIDs. These studies have used traditional NSAIDs and their metabolites which either do not inhibit COX, are non-selective for the COX isoforms or selectively inhibit COX-1 over COX-2, and recently developed NSAIDs that are highly selective for COX-2. In vitro, apoptosis is the dominant anti-proliferative effect of each of these classes of NSAID and sensitivity to NSAID-induced apoptosis increases with the malignant potential of the tumor cells. Limited in vivo evidence backs up these findings. Cell cycle arrest also contributes to the in vitro growth inhibitory effect of traditional NSAIDs. The induction of apoptosis by NSAIDs may result from the inhibition of the COX isoforms but other as yet undefined paths to NSAID-induced apoptosis clearly exist. A member of each class of NSAID is under trial as a chemopreventive agent for colorectal cancer.  相似文献   

14.
The inducible COX-2 enzyme is over-expressed in human breast cancer and its over-expression generally correlates with angiogenesis, deregulation of apoptosis and worse prognosis. This observation may explain the beneficial effect of nonsteroidal anti-inflammatory drugs and COX-2 inhibitors on breast cancer treatment. Here, we evaluated the antiproliferative activity of celecoxib, a selective COX-2 inhibitor, and its nitro-oxy derivative on human breast cancer cells characterized by low and high COX-2 expression, respectively. In ERα(+) MCF-7 cells celecoxib and its derivative induce a strong inhibition of cell growth, inhibition that is associated with the reduction of ERα expression and activation. These effects may be directly associated with ERK and Akt suppression and with PP2A and PTEN induction. In this cell line the drugs exert only weak effect on COX-2 level while they are able to reduce aromatase expression. On the contrary, in ERα(-) MDA-MB-231 cells, both drugs induce a marked inhibition of COX-2, inhibition that is associated with the reduction of aromatase expression and of cell proliferation. In both cell lines the effects of the drugs are associated with the suppression of cell invasion.  相似文献   

15.
Cyclooxygenase (COX) is the key enzyme for prostaglandin (PG) synthesis. PGs are mediators of many critical physiological and inflammatory responses. There are two isoforms, COX-1 and COX-2, both of which are constitutively expressed in the central nervous system (CNS). Studies have shown that COX-1 and COX-2 are involved in physiological and pathological conditions of the brain. However, little is known about the role(s) of COX in the host defense system against a viral infection in the CNS. In this report, we used Vesicular Stomatitis Virus (VSV) induced acute encephalitis to distinguish between the contribution(s) of the two isoforms. COX-2 activity was inhibited with a COX-2 selective drug, celecoxib (Celebrex), and COX-1 was antagonized with SC560. We found that inhibition of COX-2 led to decreased viral titers, while COX-1 antagonism did not have the same effect at day 1 post infection. 5-lipooxygenase (5-LO) expression and neutrophil recruitment in the CNS were increased in celecoxib-inhibited mice. Furthermore, mice treated with celecoxib expressed more Nitric Oxide Synthase-1 (NOS-1), a crucial component of the innate immune system in the restriction of VSV propagation. The expression of type 1 cytokines, IFN-gamma and IL-12, were also increased in celecoxib-treated mice.  相似文献   

16.
Nonsteroidal anti-inflammatory drugs (NSAIDs) are inhibitors of cyclooxygenase (COX). Our previous observations that celecoxib, a COX-2-specific inhibitor, not only inhibits rat mammary carcinogenesis, but also decreases fat deposition in rats fed a high-fat diet, prompted us to determine whether celecoxib affects lipid metabolism. At 57 days of age, two groups of 10 female Sprague Dawley rats were pair-fed a high-fat diet with or without 1500 ppm celecoxib for 15 weeks. Compared with controls, celecoxib-treated rats had 44.4% less hepatic triglycerides and 22.6% less intra-abdominal adipose tissue mass. In the liver and adipose tissue of several genes involved in fat metabolism and mobilization that we measured, only fatty acid synthase (FAS) was significantly down-regulated by celecoxib treatment. There were no differences in the level of prostaglandin E(2) in these tissues, indicating that celecoxib decreases fat accumulation by down-regulating FAS through a COX-2-independent mechanism. Among the potential molecular targets by which celecoxib may regulate FAS expression, only c-Jun N-terminal kinase-1 (JNK1) was significantly down-regulated. Furthermore, a known inhibitor of JNK suppressed FAS expression in rat hepatocytes. Our observations suggest that celecoxib suppresses FAS expression and decreases fat accumulation by down-regulating JNK1.  相似文献   

17.
Cyclooxygenase-2 (COX-2) inhibitors are rapidly emerging as a new generation of therapeutic drug in combination with chemotherapy or radiation therapy for the treatment of cancer. The mechanisms underlying its antitumor effects are not fully understood and more thorough preclinical trials are needed to determine if COX-2 inhibition represents a useful approach for prevention and/or treatment of breast cancer. The purpose of this study was to evaluate the growth inhibitory mechanism of a highly selective COX-2 inhibitor, celecoxib, in an in vivo oncogenic mouse model of spontaneous breast cancer that resembles human disease. The oncogenic mice carry the polyoma middle T antigen driven by the mouse mammary tumor virus promoter and develop primary adenocarcinomas of the breast. Results show that oral administration of celecoxib caused significant reduction in mammary tumor burden associated with increased tumor cell apoptosis and decreased proliferation in vivo. In vivo apoptosis correlated with significant decrease in activation of protein kinase B/Akt, a cell survival signaling kinase, with increased expression of the proapoptotic protein Bax and decreased expression of the antiapoptotic protein Bcl-2. In addition, celecoxib treatment reduced levels of proangiogenic factor (vascular endothelial growth factor), suggesting a role of celecoxib in suppression of angiogenesis in this model. Results from these preclinical studies will form the basis for assessing the feasibility of celecoxib therapy alone or in combination with conventional therapies for treatment and/or prevention of breast cancer.  相似文献   

18.
The design and synthesis of novel pyrazole based derivatives has been carried out using the ligand based approach like pharmacophore and QSAR modelling of reported pyrazoles from the available literature to investigate the chemical features that are essential for the design of selective and potent COX-2 inhibitors. Both pharmacophore and QSAR models with good statistical parameters were selected for the design of the lead molecule. Also by exploiting the chemical structures of selective and marketed COX-2 inhibitors, celecoxib and SC-558 were used in designing the molecules which are used in the treatment of inflammation and related disorders. The therapeutic action of the Non-Steroidal Anti-inflammatory Agents (NSAIDs) is based primarily on the COX-2 inhibition. With this background we have synthesized some azomethine derivatives of 3-methyl-1-substituted-4-phenyl-6-[{(1E)-phenylmethylene}amino]-1,4-dihydro pyrano[2,3-c]pyrazole-5-carbonitrile 6(a-o) and were characterized by 1HNMR, 13CNMR and Mass spectral techniques. All the synthesized pyrazole derivatives were tested for in vitro membrane stability property in both COX-1 & COX-2 inhibition studies and in vivo anti-inflammatory activity by carrageenan induced rat paw edema model. Among them, compound 6k showed very good activity by in vivo anti-inflammatory activity with 0.8575 mmol/kg as ED50. Similarly compounds 6m, 6o, 6i and 6h exhibited comparable anti-inflammatory activity to standard drugs. Also the active compounds were further screened for ulcerogenic activity and were found be safer with less ulcer index compared to the marketed drugs like aspirin, ibuprofen and celecoxib.  相似文献   

19.
Cyclooxygenase-2 is a very important physiological enzyme playing key roles in various biological functions especially in the mechanism of pain and inflammation, among other roles, making it a molecule of high interest to the pharmaceutical community as a target. COX 2 enzyme is induced only during inflammatory processes or cancer and reflects no role in the guarding stomach lining. Thus, selective COX-2 inhibition can significantly reduce the adverse effects including GI tract damage and hepatotoxic effects of traditional NSAIDs like aspirin, ibuprofen, etc. Recent developments on COX-2 inhibitors is primarily focused on improving the selectivity index of the drug towards COX-2 along with enhancing the potency of the drug by modifying the scaffolds of Coxibs currently in the market like Celecoxib, Indomethacin, Oxaprozin, etc. We have reported the progress on new COX-2 inhibitors in the last decade (2008–2019) focussing on five heterocyclic rings- Pyrazole, Indole, Oxazole, Pyridine and Pyrrole. The addition of various moieties to these core rings and their structure-activity relationship along with their molecular modelling data have been explored in the article. This review aims to aid medicinal chemists in the design and discovery of better COX-2 inhibitors constructed on these five heterocyclic pharmacophores.  相似文献   

20.
Although dual inhibition of Cyclooxygenase-2 (COX-2) and 5-Lipoxygenase (5-LOX) enzymes is highly effective than targeting COX or LOX alone, there are only a few reports of examining such compounds in case of colorectal cancers (CRC). In the present work we report that the novel di-tert-butyl phenol-based dual inhibitors DTPSAL, DTPBHZ, DTPINH, and DTPNHZ exhibit significant cytotoxicity against human CRC cell lines. Molecular docking studies revealed a good fit of these compounds in the COX-2 and 5-LOX protein cavities. The inhibitors show significant inhibition of COX-2 and 5-LOX activities and are effective against a panel of human colon cancer cell lines including HCA-7, HT-29, SW480 and intestinal Apc10.1 cells as well as the hyaluronan synthase-2 (Has2) enzyme over-expressing colon cancer cells, through inhibition of the Hyaluronan/CD44v6 cell survival pathway. Western blot analysis and qRT-PCR analyses indicated that the di-tert-butyl phenol-based dual inhibitors reduce the expression of COX-2, 5-LOX, and CD44v6 in human colon cancer HCA-7 cells, while the combination of CD44v6shRNA and DTPSAL has an additional inhibitory effect on CD44v6 mRNA expression. The synergistic inhibitory effect of Celecoxib and Licofelone on CD44v6 mRNA expression suggests that the present dual inhibitors down-regulate cyclooxygenase and lipoxygenase enzymes through CD44v6. The compounds also exhibited enhanced antiproliferative potency compared to standard dual COX/LOX inhibitor, viz. Licofelone. Importantly, the HA/CD44v6 antagonist CD44v6shRNA in combination with synthetic compounds had a sensitizing effect on the cancer cells which enhanced their antiproliferative potency, a finding which is crucial for the anti-proliferative potency of the novel synthetic di-tert-butyl phenol based dual COX–LOX inhibitors in colon cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号