首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
IGFBP7 as an early biomarker has been used to identify patients at risk of developing acute kidney injury (AKI). Nevertheless, its role in AKI remains obscure. The aim of our study is to determine the role and mechanism of IGFBP7 in lipopolysaccharide (LPS)-induced HK-2 cells in vitro and on sepsis-induced AKI by cecal ligation and puncture (CLP) in vivo. Here, we identified that IGFBP7 expression was increased in patients with AKI and HK-2 cells with LPS (1, 2, and 5 μg/mL) induction. HK-2 cells with LPS induction showed cell cycle arrest at G1-G0 phases and cell apoptosis and activated ERK1/2 parallel with the changes in the proteins belonging to the ERK1/2 pathway, including Cyclin D1, P21, Bax, and Bcl-2, which were inhibited by the IGFBP7 knockdown. Moreover, IGFBP7 overexpression significantly induced cell cycle arrest at G1-G0 phases and cell apoptosis of HK-2 cells, which were inhibited by PD98509, an ERK1/2 signaling inhibitor. IGFBP7 knockdown effectively alleviated the severity of the renal injury, evidenced by decreases in the urinary levels of creatinine, blood urea nitrogen, and albumin, cell apoptosis, and activation of ERK1/2 signaling in CLP mice. Taken together, our findings indicate that IGFBP7 regulates sepsis-induced AKI through ERK1/2 signaling.  相似文献   

3.
Surfactin has been known to inhibit proliferation and induce apoptosis in cancer cells. However, the molecular mechanisms involved in surfactin-induced apoptosis remain poorly understood. The present study was undertaken to elucidate the underlying network of signaling events in surfactin-induced apoptosis of human breast cancer MCF-7 cells. In this study, surfactin caused reactive oxygen species (ROS) generation and the surfactin-induced cell death was prevented by antioxidants N-acetylcysteine (NAC) and catalase, suggesting involvement of ROS generation in surfactin-induced cell death. Surfactin induced a sustained activation of the phosphorylation of ERK1/2 and JNK, but not p38. Moreover, surfactin-induced cell death was reversed by PD98059 (an inhibitor of ERK1/2) and SP600125 (an inhibitor of JNK), but not by SB203580 (an inhibitor of p38). However, the phosphorylation of JNK rather than ERK1/2 activation by surfactin was blocked by NAC/catalase. These results suggest that the action of surfactin on MCF-7 cells was via ERK1/2 and JNK, but not via p38, and the ERK1/2 and JNK activation induce apoptosis through two independent signaling mechanisms. Surfactin triggered the mitochondrial/caspase apoptotic pathway indicated by enhanced Bax-to-Bcl-2 expression ratio, loss of mitochondrial membrane potential, cytochrome c release, and caspase cascade reaction. The NAC and SP600125 blocked these events induced by surfactin. Moreover, the general caspase inhibitor z-VAD-FMK inhibited the caspase-6 activity and exerted the protective effect against the surfactin-induced cell death. Taken together, these findings suggest that the surfactin induces apoptosis through a ROS/JNK-mediated mitochondrial/caspase pathway.  相似文献   

4.
The aim of this study was to investigate how miR-21 promotes proliferation and inhibits apoptosis in esophageal squamous cell carcinoma (ESCC). MTT, wound healing assay and cell cycle showed that proliferation and migration of ESCC cell line Eca109 cells were increased in miR-21 mimics group, and decreased in anti-miR-21 Oligonucleotide (AMO) group after transfection into Eca109 cells with miR-21 mimics, AMO and scramble sequence, respectively. Cell apoptosis assay indicated that cell apoptosis can be obviously inhibited by overexpression of miR-21 and promoted by downregulation of miR-21. Meanwhile, western-blot results showed that p-ERK1/2 expression was elevated in miR-21 mimics group, whereas decreased in AMO group. Furthermore, the ERK1/2, a key component of MAPK signaling pathway, was knocked down, and overexpressed successfully using shRNA-ERK1/2 and overexpressing plasmids containing full length cDNA of ERK1/2, respectively. It was observed that shRNA-ERK1/2 can significantly decreased the level of miR-21 expression, while overexpression of ERK1/2 can up-regulate expression of miR-21. As further confirmation, Eca109 cells were treated with gradient concentration of U0126, a kind of MEK inhibitor, and expression of miR-21 was subsequently examined. It was found that U0126 can significantly decreased endogenous expression of miR-21. In parallel, U0126 decreased cell proliferation, migration and increased the apoptosis in Eca109 cells, with the expression of miR-21 being reduced significantly in U0126 group as compared with control groups. Our findings indicated that miR-21 promoted the proliferation, migration and inhibited apoptosis of Eca109 cells through activating ERK1/2/MAPK pathway, and that targeting miR-21 could be a promising therapeutic strategy in ESCC.  相似文献   

5.
《Translational oncology》2020,13(11):100833
Head and neck cancer (HNC) is characterized with multiple aberrations in cell cycle pathways, including amplification of cyclin D1. Palbociclib (PAL), a cyclin-dependent kinase 4/6 (CDK4/6) inhibitor, has been reported to regulate cell cycle progression in HNC. However, recent studies have revealed the acquired resistance of certain cells to PAL through activation of the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway. Therefore, we investigated whether the inhibition of MEK/ERK pathway by trametinib (TRA) may overcome the limited efficacy of PAL in HNC. We evaluated the effect of PAL alone and in combination with TRA on the viability of HNC cells, and found that the combination treatment synergistically inhibited the proliferation of HNC cells. The combination treatment induced G0/G1 cell cycle arrest and apoptotic cell death. In particular, apoptosis mediated by the combination treatment was accompanied with an increase in caspase-3 activity and the number of TUNEL-positive apoptotic cells. These results were consistent with the decrease in cell cycle progression and mitogen-activated protein kinase (MAPK) pathway activation. In a xenograft mouse model of HNC, PAL and TRA synergistically inhibited tumor growth and enhanced tumor cell apoptosis, consistent with the increase in the number of TUNEL-positive cells. The anti-proliferative effects were evident in tumor tissues subjected to the combination treatment as compared with those treated with single drug. Taken together, our study demonstrates that the combination of PAL and TRA exerts synergistic anticancer effects and inhibits cell cycle check points and MEK/ERK pathway in HNC, suggestive of their potential application for HNC treatment.  相似文献   

6.
Bone morphogenetic protein 2 (BMP2), a member of the transforming growth factor-beta (TGF-beta) superfamily, regulates a variety of cell fates and functions. At present, the molecular mechanism by which BMP2 induces apoptosis has not been fully elucidated. Here we propose a BMP2 signaling pathway that mediates apoptosis in mouse hybridoma MH60 cells whose growth is interleukin-6 (IL-6)-dependent. BMP2 dose-dependently induces apoptosis in MH60 cells even in the presence of IL-6. BMP2 has no inhibitory effect on the IL-6-induced tyrosine phosphorylation of STAT3, and the bcl-2 gene expression which is known to be regulated by STAT3, suggesting that BMP2-induced apoptosis is not attributed to alteration of the IL-6-mediated bcl-2 pathway. We demonstrate that BMP2 induces activation of TGF-beta-activated kinase (TAK1) and subsequent phosphorylation of p38 stress-activated protein kinase. In addition, forced expression of kinase-negative TAK1 in MH60 cells blocks BMP2-induced apoptosis. These results indicate that BMP2-induced apoptosis is mediated through the TAK1-p38 pathway in MH60 cells. We also show that MH60-derived transfectants expressing Smad6 are resistant to the apoptotic signal of BMP2. Interestingly, this ectopic expression of Smad6 blocks BMP2-induced TAK1 activation and p38 phosphorylation. Moreover, Smad6 can directly bind to TAK1. These findings suggest that Smad6 is likely to function as a negative regulator of the TAK1 pathway in the BMP2 signaling, in addition to the previously reported Smad pathway.  相似文献   

7.
Excess fluoride intake could induce apoptosis in the cells. As an essential micronutrient and cytoprotectant, zinc is involved in many types of apoptosis. Here, we studied the effects of zinc and ZIP1 on fluoride-induced apoptosis in mouse MC3T3-E1 cells and examined the underlying molecular mechanisms. Our study found that fluoride not only inhibited cell proliferation and increased the intracellular reactive oxygen species (ROS) but also induced cell apoptosis. Whereas pretreatment with zinc significantly attenuated fluoride-induced ROS production and partly protected cells against fluoride-induced apoptosis through MAPK/ERK signaling pathway. Our study also found that fluoride upregulated the expression of ZIP1 in a time-dependent manner. Moreover, overexpression of ZIP1 also inhibited fluoride-induced apoptosis by activation of PI3K/Akt pathway. This cytoprotective effect of zinc and ZIP1 may be new factors that affect the physiological activity of fluoride and need study further.  相似文献   

8.
ATP is an extracellular signaling molecule that activates specific G protein-coupled P2Y receptors in most cell types to mediate diverse biological effects. ATP has been shown to activate the phospholipase C (PLC)/diacylglycerol/protein kinase C (PKC) pathway in various systems. However, little is known about the signaling events in human endometrial stromal cells (hESCs). The objective of this study was to examine the presence of the P2Y2 receptor and the effects of exogenous ATP on the intracellular mitogen-activated protein kinases (MAPKs) signaling pathway, immediate early genes expression, and cell viability in hESCs. Western blot analysis, gene array analysis, and MTT assay for cell viability were performed. The current study demonstrated the existence of the P2Y2 purinergic receptor in hESCs. UTP and ATP activated MAPK in a dose- and time-dependent manner. Suramin (a P2-purinoceptor antagonist), neomycin (a PLC inhibitor), staurosporin (a PKC inhibitor), and PD98059 (a MEK inhibitor) significantly attenuated the ATP-induced activation of MAPK. ATP activated ERK1/2 and induced translocation of activated ERK1/2 to the nucleus. The gene array for 23 genes associated with members of the mitogenic pathway cascade and immediate early genes revealed that the expression of early growth response 1 was increased. In addition, MTT assay revealed an inhibition effect of ATP on cell viability. ATP activated MAPKs through the P2Y2 purinoceptor/PLC/PKC/ERK signaling pathway and induced translocation of ERK1/2 into the nucleus. Further, ATP induced the expression of early growth response 1 and inhibited cell viability in hESCs.  相似文献   

9.
1,7-Bis(4-hydroxyphenyl)-1,4-heptadien-3-one (EB30) is a diarylheptanoid-like compound isolated from Viscum coloratum. This curcumin analog exhibits significant cytotoxic activity against HeLa, SGC-7901, and MCF-7 cells. However, little is known about the anticancer effects and mechanisms of EB30 in human lung cancer. The current study reports that EB30 significantly reduced the cell viability of A549 and NCI-H292 human lung cancer cells. Further examination revealed that EB30 not only induced cell cycle arrest and promoted the generation of reactive oxygen species (ROS) but also induced cell apoptosis through the intrinsic and extrinsic signaling pathways. Furthermore, EB30 upregulated the expression levels of p-ERK1/2 and p-P90RSK, whereas downregulating the phosphorylation of Akt and P70RSK. Cell viability was further inhibited by the combination of EB30 with LY294002 (a specific PI3K inhibitor) or U0126 (a MEK inhibitor). The current study indicates that EB30 is a potential anticancer agent that induces cell apoptosis via suppression of the PI3K/Akt pathway and activation of the ERK1/2 pathway.  相似文献   

10.
Angiopoietin-1 (Ang1) and its receptor, Tie2, play critical roles in blood vessel formation. Ang1 triggers a variety of signaling events in endothelial cells leading to vasculogenic and angiogenic processes. However, the underlying mechanism for Ang1/Tie2 signaling is not fully understood. Here, we show that Tie2 and phospholipase D (PLD) are localized in the caveolae, specialized subdomains of the endothelial cell plasma membrane enriched with signaling molecules. Interestingly, Ang1 increased PLD activities in a dose- and time-dependent manner. Ang1-induced MEK/ERK activation was abrogated when PLD was inhibited, suggesting that PLD mediates Ang1-induced MEK/ERK activation. Moreover, PLD inhibitor, 1-butanol, inhibited Ang1-induced endothelial cell migration. Our results indicate that: (1) caveolae may be the platform for Tie2/PLD association in endothelial cells; (2) PLD is a new mediator of Ang1/Tie2-induced signaling pathway, and it participates in MAPK activation and endothelial cell migration.  相似文献   

11.
Previous studies have reported strong antitumor effects of cisplatin and sorafenib. Our results indicated that cisplatin and sorafenib exhibited anti-tumor effects on gastric cancer cells. They significantly inhibited gastric cell growth and induced apoptosis. They effectively inhibited gastric cancer cell proliferation and induced G0/G1 phase arrest. Western blotting analysis indicated that it also promoted the phosphorylation extracellular signal regulated kinase (p-ERK). Moreover, cisplatin and sorafenib played a synergistic antitumor effect. These results suggested that the antitumor mechanism of cisplatin and sorafenib involved altering the cell cycle and stimulating ERK phosphorylation in the ERK signaling pathway.  相似文献   

12.
BackgroundArtematrolide A (AR-A), a guaianolide dimer isolated from Artemisia atrovirens, demonstrated significant inhibitory effect on three human hepatoma cell lines (HepG2, Huh7 and SMMC7721). The anti-cervical cancer effect and mechanism of this compound have yet to be explored. This study is to reveal the role and mechanisms of artematrolide A on cervical cancer cells, and provide the pharmacological understanding of artematrolide A.PurposeTo investigate the function and possible mechanism of artematrolide A on cervical cancer cells in vitro.MethodsHeLa S3 and SiHa cells were treated with artematrolide A at various concentrations. In this study, MTT, colony formation, cell migration and invasion, cell cycle analysis, cell apoptosis, reactive oxygen species (ROS) detection, western blotting, enzyme activity, and lactate production of artematrolide A were evaluated.ResultsArtematrolide A inhibited cell viability, proliferation, migration and invasion in a dose-dependent manner, caused cell cycle arrest in G2/M phase, and induced cell apoptosis via Bcl-2/PARP-1. The mechanism of action of artematrolide A included two aspects: artematrolide A suppressed cell proliferation by activating ROS/ERK/mTOR signaling pathway and promoted glucose metabolism from aerobic glycolysis to mitochondrial respiration by activating pyruvate dehydrogenase complex (PDC) and oxoglutarate dehydrogenase complex (OGDC) via inhibiting the activity of alkaline phosphatases (ALP).ConclusionArtematrolide A exhibited a significant cytotoxic activity on cervical cancer cells, induced G2/M cell cycle arrest and apoptosis by activating ROS/ERK/mTOR signaling pathway and promoting metabolic shift from aerobic glycolysis to mitochondrial respiration, which suggested artematrolide A might be a potential agent for the treatment of cervical cancer.  相似文献   

13.
Colorectal cancer (CRC) is a common disease with high mortality and morbidity. Annexin A3 (ANXA3) belongs to the structurally homologous family of Ca2+ and phospholipid-binding proteins. This study aimed to investigate the effects and potential mechanisms of ANXA3 on oxaliplatin (Ox) resistance in CRC. We generated two human CRC cell lines (HCT116/Ox and SW480/Ox) with acquired Ox resistance and determined their resistance properties. ANXA3 expression and cell apoptosis, migration and invasion also were evaluated. We found that cell viability of HCT116/Ox and SW480/Ox was higher than that in parental cells in the presence of Ox. ANXA3 was highly expressed in HCT116/Ox and SW480/Ox cells. ANXA3 downregulation diminished cell survival, migration and invasion, while increased the apoptosis of HCT116 and SW480 with or without Ox. Moreover, depletion of ANXA3 reduced cell viability and BrdU incorporation, increased cell apoptosis and c-caspase 3 expression in HCT116/Ox with or without Ox. A transwell assay determined that knockdown of ANXA3 impeded the migration and invasion of HCT116/Ox and SW480/Ox cells. Additionally, phosphorylation of extracellular signal–regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) decreased upon ANXA3 depletion in HCT116/Ox cells, and ANXA3 silencing suppressed Ox-induced activation of ERK and JNK signaling pathway. ANXA3 downregulation reduced Ox resistance in CRC, and treatment with the ERK inhibitor PD098059 or JNK inhibitor SP600125 contributed to this process. These results indicate that silencing ANXA3 could overcome Ox resistance in CRC via the mitogen-activated protein kinase signaling pathway.  相似文献   

14.
We have shown that the stimulation of beta-adrenergic receptors (beta-AR) increases apoptosis in adult rat ventricular myocytes (ARVMs). Integrins, a family of alphabeta-heterodimeric cell surface receptors, are postulated to play a role in ventricular remodeling. Here, we show that norepinephrine (NE) increases beta1 integrins expression in ARVMs via the stimulation of alpha1-AR, not beta-AR. Inhibition of ERK1/2 using PD 98059, an inhibitor of ERK1/2 pathway, inhibited alpha1-AR-stimulated increases in beta1 integrins expression. Activation of beta1 integrins signaling pathway using laminin (LN) inhibited beta-AR-stimulated apoptosis as measured by terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL)-staining and flow cytometry. Likewise, ligation of beta1 integrins with anti-beta1 integrin antibodies prevented beta-AR-stimulated apoptosis. Treatment of cells using LN or anti-beta1 integrin antibodies activated ERK1/2 pathway. PD 98059 inhibited activation of ERK1/2 by LN, and prevented the anti-apoptotic effects of LN. Thus (1) stimulation of alpha1-AR regulates beta1 integrins expression via the activation of ERK1/2, (2) beta1 integrins signaling protects ARVMs from beta-AR-stimulated apoptosis, (3) activation of ERK1/2 plays a critical role in the anti-apoptotic effects of beta1-integrin signaling. These data suggest that beta1 integrin signaling protects ARVMs against beta-AR-stimulated apoptosis possibly via the involvement of ERK1/2.  相似文献   

15.
Long noncoding RNAs (lncRNAs) have important functions in tumor development and progression, including colorectal cancer (CRC), but their roles are not completely understood. In this study, the roles of the lncRNA transmembrane phosphoinositide 3-phosphatase and tensin homolog 2 pseudogene 1 (TPTE2P1), previously implicated in gallbladder cancer cell migration and invasion, were evaluated in CRC. In particular, quantitative polymerase chain reaction was used to quantify TPTE2P1 levels in tumor tissues and cell lines. The association between TPTE2P1 and survival was analyzed using the online tool OncoLnc. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, colony formation assays, and flow cytometry were used to evaluate the effects of TPTE2P1 on viability, cell cycle progression, and apoptosis. Signaling pathway proteins were quantitated by Western blot analysis. Finally, the role of TPTE2P1 was analyzed in vivo using mouse models. TPTE2P1 levels were significantly higher in CRC tissues than in adjacent normal tissues. Higher expression was associated with a poor survival rate. The silencing of TPTE2P1 led to cell cycle arrest at the S phase and thereby inhibited cell viability. TPTE2P1 knockdown also caused cancer cell apoptosis via the activation of the apoptosis regulator (BCL2)/caspase 3 signaling cascade. In addition, the inhibition of TPTE2P1 had suppressive effects on tumors in vivo. TPTE2P1 is upregulated in CRC and plays essential roles in the regulation of cell viability in vitro and tumor formation in vivo.  相似文献   

16.
Wu W  Sun Z  Wu J  Peng X  Gan H  Zhang C  Ji L  Xie J  Zhu H  Ren S  Gu J  Zhang S 《PloS one》2012,7(1):e29920
c-Src activates Ras-MAPK/ERK signaling pathway and regulates cell migration, while trihydrophobin 1 (TH1) inhibits MAPK/ERK activation and cell migration through interaction with A-Raf and PAK1 and inhibiting their kinase activities. Here we show that c-Src interacts with TH1 by GST-pull down assay, coimmunoprecipitation and confocal microscopy assay. The interaction leads to phosphorylation of TH1 at Tyr-6 in vivo and in vitro. Phosphorylation of TH1 decreases its association with A-Raf and PAK1. Further study reveals that Tyr-6 phosphorylation of TH1 reduces its inhibition on MAPK/ERK signaling, enhances c-Src mediated cell migration. Moreover, induced tyrosine phosphorylation of TH1 has been found by EGF and estrogen treatments. Taken together, our findings demonstrate a novel mechanism for the comprehensive regulation of Ras/Raf/MEK/ERK signaling and cell migration involving tyrosine phosphorylation of TH1 by c-Src.  相似文献   

17.
Signaling in cell proliferation, cell migration, and apoptosis is highly affected by osmotic stress and changes in cell volume, although the mechanisms underlying the significance of cell volume as a signal in cell growth and death are poorly understood. In this study, we used NIH-3T3 fibroblasts in a serum- and nutrient-free inorganic medium (300 mosM) to analyze the effects of osmotic stress on MAPK activity and PDGF receptor (PDGFR)-beta-mediated signal transduction. We found that hypoosmolarity (cell swelling at 211 mosM) induced the phosphorylation and nuclear translocation of ERK1/2, most likely via a pathway independent of PDGFR-beta and MEK1/2. Conversely, hyperosmolarity (cell shrinkage at 582 mosM) moved nuclear and phosphorylated ERK1/2 to the cytoplasm and induced the phosphorylation and nuclear translocation of p38 and phosphorylation of JNK1/2. In a series of parallel experiments, hypoosmolarity did not affect PDGF-BB-induced activation of PDGFR-beta, whereas hyperosmolarity strongly inhibited ligand-dependent PDGFR-beta activation as well as downstream mitogenic signal components of the receptor, including Akt and the MEK1/2-ERK1/2 pathway. Based on these results, we conclude that ligand-dependent activation of PDGFR-beta and its downstream effectors Akt, MEK1/2, and ERK1/2 is strongly modulated (inhibited) by hyperosmotic cell shrinkage, whereas cell swelling does not seem to affect the activation of the receptor but rather to activate ERK1/2 via a different mechanism. It is thus likely that cell swelling via activation of ERK1/2 and cell shrinkage via activation of the p38 and JNK pathway and inhibition of the PDGFR signaling pathway may act as key players in the regulation of tissue homeostasis.  相似文献   

18.
Cervical cancer is a cancer arising from the cervix, and it is the fourth most common cause of death in women. Overexpression of fibronectin 1 (FN1) was observed in many tumors and associated with the survival and metastasis of cancer cells. However, the mechanism by which FN1 promotes cervical cancer cell viability, migration, adhesion, and invasion, and inhibits cell apoptosis through focal adhesion kinase (FAK) signaling pathway remains to be investigated. Our results demonstrated that FN1 was upregulated in patients with cervical cancer and higher FN1 expression correlated with a poor prognosis for patients with cervical cancer. FN1 knockdown by small interfering RNA (siRNA) inhibited SiHa cell viability, migration, invasion, and adhesion, and promoted cell apoptosis. FN1 overexpression in CaSki cell promoted cell viability, migration, invasion, and adhesion, and inhibited cell apoptosis. Further, phosphorylation of FAK, a main downstream signaling molecule of FN1, and the protein expression of Bcl-2/Bax, matrix metalloproteinase 2 (MMP-2), matrix metalloproteinase 9 (MMP-9), and N-cadherin was upregulated in CaSki cells with FN1 overexpression, but caspase-3 protein expression was downregulated. The FAK phosphorylation inhibitor PF573228 inhibited FN1 overexpression-induced expression of those proteins in CaSki cells with FN1 overexpression. In vivo experiment demonstrated that FN1 knockdown significantly inhibited FN1 expression, phosphorylation of FAK, and tumor growth in xenograft from the nude mice. These results suggest that FN1 regulates the viability, apoptosis, migration, invasion, and adhesion of cervical cancer cells through the FAK signaling pathway and is a potential therapeutic target in the treatment of cervical cancer.  相似文献   

19.
Protein kinase C is a family of serine/threonine protein kinases involved in many cellular responses, including cell survival and apoptosis. We have recently found that specific inhibition of the PKCα isoform by nucleic acid enzymes induced apoptosis in sensitive cells. Here we show that in PKCα DNA enzyme-treated glioma cells the activation of MAP kinases ERK1/2 is inhibited, whereas their total level was not significantly affected by the treatment. Similar results were obtained when the overall activity of the PKC was inhibited by calphostin, a specific inhibitor for PKC. These results would indicate that the ERK1/2 signaling pathway plays an important role in glioma cell survival and that the PKCα isoform is the main modulator of this pathway. Furthermore, we show that the ERK1/2 signaling pathway is required for the constitutive expression of the basic fibroblast growth factor, a potent mitogen for glioma cell growth.  相似文献   

20.
Signaling and regulation of endothelial cell survival by angiopoietin-2   总被引:1,自引:0,他引:1  
Angiopoietins are ligands for endothelial cell-specific Tie-2 receptors. Whereas angiopoietin-1 (Ang-1) activates these receptors and promotes cell survival, migration, and sprouting, little information is available regarding how Ang-2 influences these cells. In this study, we evaluated signaling pathways and biological effects of physiological concentrations of Ang-2 in cultured human umbilical vein endothelial cells. Ang-2 at 150 and 300 ng/ml elicited a transient (reaching peak values within 15 min of exposure) increase in the phosphorylation of Tie-2 receptors, protein kinase B (Akt), ERK1/2, and p38 members of the mitogen-activated protein kinases. However, unlike Ang-1, Ang-2 significantly inhibited JNK/SAPK phosphorylation. When vascular endothelial growth factor (VEGF) was present along with Ang-2, ERK1/2 phosphorylation was inhibited, whereas augmentation of Ang-1-induced ERK1/2 phosphorylation was triggered by VEGF. Ang-2 treatment had no effect on cell migration and in vitro wound healing but significantly attenuated serum deprivation-induced apoptosis and promoted survival. These effects were completely reversed by phosphatidylinositol 3 (PI3)-kinase and ERK1/2 inhibitors but were augmented by an inhibitor of the p38 pathway. These results suggest that Ang-2 promotes endothelial cell survival through the ERK1/2 and PI3-kinase pathways and that this angiopoietin is not a strong promoter of endothelial cell migration. We also conclude that the nature of interactions in terms of ERK1/2 activation between Ang-2 and VEGF is different from that of Ang-1 and VEGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号