首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The carotid artery balloon injury model in rats has been well established for over two decades. It remains an important method to study the molecular and cellular mechanisms involved in vascular smooth muscle dedifferentiation, neointima formation and vascular remodeling. Male Sprague-Dawley rats are the most frequently employed animals for this model. Female rats are not preferred as female hormones are protective against vascular diseases and thus introduce a variation into this procedure. The left carotid is typically injured with the right carotid serving as a negative control. Left carotid injury is caused by the inflated balloon that denudes the endothelium and distends the vessel wall. Following injury, potential therapeutic strategies such as the use of pharmacological compounds and either gene or shRNA transfer can be evaluated. Typically for gene or shRNA transfer, the injured section of the vessel lumen is locally transduced for 30 min with viral particles encoding either a protein or shRNA for delivery and expression in the injured vessel wall. Neointimal thickening representing proliferative vascular smooth muscle cells usually peaks at 2 weeks after injury. Vessels are mostly harvested at this time point for cellular and molecular analysis of cell signaling pathways as well as gene and protein expression. Vessels can also be harvested at earlier time points to determine the onset of expression and/or activation of a specific protein or pathway, depending on the experimental aims intended. Vessels can be characterized and evaluated using histological staining, immunohistochemistry, protein/mRNA assays, and activity assays. The intact right carotid artery from the same animal is an ideal internal control. Injury-induced changes in molecular and cellular parameters can be evaluated by comparing the injured artery to the internal right control artery. Likewise, therapeutic modalities can be evaluated by comparing the injured and treated artery to the control injured only artery.  相似文献   

2.
The regulation of vascular endothelial growth factor (VEGF) levels and angiogenic events during skeletal muscle regeneration remains largely unknown. This study examined angiogenesis, VEGF levels, and muscle regeneration after cardiotoxin (CT)-induced injury in mice lacking the CC chemokine receptor 2 (CCR2). Muscle regeneration was significantly decreased in CCR2-/- mice as was the early accumulation of macrophages after injury. In both mouse strains, tissue VEGF was similar at baseline (no injections) and significantly decreased at day 3 post-CT. Tissue VEGF in wild-type (WT) mice was restored within 7 days postinjury but remained significantly reduced in CCR2-/- mice until day 21. Capillary density (capillaries/mm(2)) within regenerating muscle was maximal in WT mice at day 7 and double that of baseline muscle. In comparison, maximal capillary density in CCR2-/- mice occurred at 21 days postinjury. Maximal capillary density developed concurrent with the restoration of tissue VEGF in both strains. A highly significant, inverse relationship existed between the size of regenerated muscle fibers and capillaries per square millimeter. Although this relationship was comparable in WT and CCR2-/- animals, there was a significant decrease in the magnitude of this response in the absence of CCR2, reflecting the observation that regenerated muscle fiber size in CCR2-/- mice was only 50% of baseline at 42 days postinjury, whereas WT mice had attained baseline fiber size by day 21. Thus CCR2-dependent events in injured skeletal muscle, including impaired macrophage recruitment, contribute to restoration of tissue VEGF levels and the dynamic processes of capillary formation and muscle regeneration.  相似文献   

3.
Injured endothelium is an important target for drug and/or gene therapy because brain microvascular endothelial cells (BMECs) play critical roles in various pathophysiological conditions. RNA-mediated gene silencing presents a new therapeutic approach for treating such diseases, but major challenge is to ensure minimal toxicity and target delivery of siRNA to injured BMECs. Injured BMECs overexpress tissue factor (TF), which the fusion protein EGFP-EGF1 could be targeted to. In this study, TNF alpha (TNF-α) was chosen as a stimulus for primary BMECs to produce injured endothelium in vitro. The EGFP-EGF1-PLGA nanoparticles (ENPs) with loaded TF-siRNA were used as a new carrier for targeted delivery to the injured BMECs. The nanoparticles then produced intracellular RNA interference against TF. We compared ENP-based transfections with NP-mediated transfections, and our studies show that the ENP-based transfections result in a more efficient downregulation of TF. Our findings also show that the TF siRNA-loaded ENPs had minimal toxicity, with almost 96% of the cells viable 24 h after transfection while Lipofectamine-based transfections resulted in only 75% of the cells. Therefore, ENP-based transfection could be used for efficient siRNA transfection to injured BMECs and for efficient RNA interference (RNAi). This transfection could serve as a potential treatment for diseases, such as stroke, atherosclerosis and cancer.  相似文献   

4.
Therapeutic angiogenesis with vascular endothelial growth factors (VEGFs) is a promising approach for the treatment of ischemic myocardium and peripheral skeletal muscles. Preclinical studies in large animals have clearly demonstrated safety and efficacy of VEGF gene therapy in clinically relevant disease models. However, first clinical trials with intravascular delivery of VEGF vector constructs have only resulted in limited benefits to the patients. Second generation VEGF-based gene therapy trials are based on direct intramyocardial and intraskeletal muscle injections in order to achieve better transfection efficiency and more targeted effects. Phase I/II studies are currently ongoing to test safety, feasibility and efficacy of these improved approaches in patients with severe cardiovascular diseases.  相似文献   

5.
6.
Heme oxygenase and the cardiovascular-renal system   总被引:12,自引:0,他引:12  
Heme oxygenase (HO) has been shown to be important for attenuating the overall production of reactive oxygen species (ROS) through its ability to degrade heme and to produce carbon monoxide (CO), biliverdin/bilirubin, and the release of free iron. Excess free heme catalyzes the formation of ROS, which may lead to endothelial cell (EC) dysfunction as seen in numerous pathological conditions including hypertension and diabetes, as well as ischemia/reperfusion injury. The upregulation of HO-1 can be achieved through the use of pharmaceutical agents, such as metalloporphyrins and some HMG-CoA reductase inhibitors. Among other agents, atrial natriretic peptide and donors of nitric oxide (NO) are important modulators of the heme-HO system, either through induction of HO-1 or the biological activity of its products. Gene therapy and gene transfer, including site- and organ-specific targeted gene transfer, have become powerful tools for studying the potential role of HO-1/HO-2 in the treatment of various cardiovascular diseases as well as diabetes. HO-1 induction by pharmacological agents or gene transfer of human HO-1 into endothelial cells (ECs) in vitro increases cell-cycle progression and attenuates Ang II, TNF-, and heme-mediated DNA damage; administration in vivo acts to correct blood pressure elevation following Ang II exposure. Moreover, site-specific delivery of HO-1 to renal structures in spontaneously hypertensive rats (SHR), specifically to the medullary thick ascending limb of the loop of Henle (mTALH), has been shown to normalize blood pressure and provide protection to the mTAL against oxidative injury. In other cardiovascular situations, delivery of human HO-1 to hyperglycemic rats significantly lowers superoxide (O(2)(-)) levels and prevents EC damage and sloughing of vascular EC into the circulation. In addition, administration of human HO-1 to rats in advance of ischemia/reperfusion injury considerably reduces tissue damage. The ability to upregulate HO-1 through pharmacological means or through the use of gene therapy may offer therapeutic strategies for cardiovascular disease in the future. This review discusses the implications of HO-1 delivery during the early stages of cardiovascular system injury or in early vascular pathology and suggests that pharmacological agents that regulate HO activity or HO-1 gene delivery itself may become powerful tools for preventing the onset or progression of certain cardiovascular pathologies.  相似文献   

7.
ABSTRACT: BACKGROUND: Inflammation plays an important role in many pathologies, including cardiovascular diseases, neurological conditions and oncology, and is considered an important predictor for disease progression and outcome. In vivo imaging of inflammatory cells will improve diagnosis and provide a read-out for therapy efficacy. Paramagnetic phosphatidylserine (PS)-containing liposomes were developed for magnetic resonance imaging (MRI) and confocal microscopy imaging of macrophages. These nanoparticles also provide a platform to combine imaging with targeted drug delivery. RESULTS: Incorporation of PS into liposomes did not affect liposomal size and morphology up to 12 mol% of PS. Liposomes containing 6 mol% of PS showed the highest uptake by murine macrophages, while only minor uptake was observed in endothelial cells. Uptake of liposomes containing 6 mol% of PS was dependent on the presence of Ca2+ and Mg2+. Furthermore, these 6 mol% PS-containing liposomes were mainly internalized into macrophages, whereas liposomes without PS only bound to the macrophage cell membrane. CONCLUSIONS: Paramagnetic liposomes containing 6 mol% of PS for MR imaging of macrophages have been developed. In vitro these liposomes showed specific internalization by macrophages. Therefore, these liposomes might be suitable for in vivo visualization of macrophage content and for (visualization of) targeted drug delivery to inflammatory cells.  相似文献   

8.
The vascular endothelium plays an important role in regulating vascular homeostasis. Damage to the endothelium can lead to cardiovascular diseases such as arteriosclerosis. Therefore, early-stage detection and evaluation of vascular endothelium dysfunction would be very important for effective diagnosis and therapy. We synthesized a polymeric drug carrier bearing an Evans blue analogue as a probing unit for endothelium injury. The polymeric carrier spontaneously formed stable nanoparticles with micelle-like structure in aqueous media and could encapsulate hydrophobic doxorubicin (DOX). The encapsulated DOX showed a sustainable release profile over a period of 10-60 h depending on the loaded DOX concentration. The polymeric carrier specifically adsorbed against the endothelium-injured site in extracted porcine aorta. These properties of the polymeric drug carrier will be suitable for specific drug delivery to endothelium dysfunctional region.  相似文献   

9.
The effect of minocycline on nerve regeneration was studied in a rat model of acute sciatic nerve injury, in which the injury was caused by resection and reimplantation of the right sciatic nerve. Immunohistochemical and molecular biological methods, as well as morphometric and electron microscopic techniques, were used. Compared with uninjured and PBS-treated injured nerves, the minocycline-treated injured nerve showed: (i) a decrease in macrophage recruitment and activation, probably resulting from inhibition of blood-brain-barrier break-down via reduced MMP2 and MMP9 induction, inhibition of revascularization via additional reduction of VEGF induction, and inhibition of inducible NO synthase (iNOS) induction; (ii) reduced activation of phagocytic Schwann cells, probably by inhibition of iNOS, MMP2 and MMP9 expression; (iii) a slowed Wallerian degeneration; and subsequently, (iv) a diminished nerve regeneration. Macrophages, especially their function in the removal of cellular debris and formation of a microenvironment beneficial for nerve regeneration, are strongly implicated in constructive events after nerve injuries. Therefore, we suggest that additional research into optimizing minocycline intervention for treatment of neurodegenerative diseases is needed before further clinical trials are performed.  相似文献   

10.
VEGF165 Therapy Exacerbates Secondary Damage Following Spinal Cord Injury   总被引:1,自引:0,他引:1  
Vascular endothelial growth factor (VEGF) demonstrates potent and well-characterized effects on endothelial cytoprotection and angiogenesis. In an attempt to preserve spinal microvasculature and prolong the endogenous neovascular response observed transiently following experimental spinal cord injury (SCI), exogenous recombinant human VEGF (rhVEGF165) was injected into the injured rat spinal cord. Adult female Fischer 344 rats were subjected to moderate SCI (12.5 g-cm) using the NYU impactor. At 72 h after injury, animals were randomly assigned to three experimental groups receiving no microinjection or injection of saline or saline containing 2 g of rhVEGF165. Acutely, VEGF injection resulted in significant microvascular permeability and infiltration of leukocytes into spinal cord parenchyma. 6 weeks postinjection, no significant differences were observed in most measures of microvascular architecture following VEGF treatment, but analysis of histopathology in spinal cord tissue revealed profound exacerbation of lesion volume. These results support the idea that intraparenchymal application of the proangiogenic factor VEGF may exacerbate SCI, likely through its effect on vessel permeability.  相似文献   

11.
Epidemiological studies suggest that the consumption of flavonoid-rich diets decreases the risk of cardiovascular diseases. However, the target sites of flavonoids underlying the protective mechanism in vivo are not known. Quercetin represents antioxidative/anti-inflammatory flavonoids widely distributed in the human diet. In this study, we raised a novel monoclonal antibody 14A2 targeting the quercetin-3-glucuronide (Q3GA), a major antioxidative quercetin metabolite in human plasma, and found that the activated macrophage might be a potential target of dietary flavonoids in the aorta. Immunohistochemical studies with monoclonal antibody 14A2 demonstrated that the positive staining specifically accumulates in human atherosclerotic lesions, but not in the normal aorta, and that the intense staining was primarily associated with the macrophage-derived foam cells. In vitro experiments with murine macrophage cell lines showed that the Q3GA was significantly taken up and deconjugated into the much more active aglycone, a part of which was further converted to the methylated form, in the activated macrophages. In addition, the mRNA expression of the class A scavenger receptor and CD36, which play an important role for the formation of foam cells, was suppressed by the treatment of Q3GA. These results suggest that injured/inflamed arteries with activated macrophages are the potential targets of the metabolites of dietary quercetin. Our data provide a new insight into the bioavailability of dietary flavonoids and the mechanism for the prevention of cardiovascular diseases.  相似文献   

12.
目的:探讨miR-375在血管损伤细胞中的表达及生物学功能。方法:利用基因克隆技术构建miR-375表达载体;然后将miR-375表达质粒转染至血管损伤细胞中,同时分别设立Huvec12对照组,血管损伤细胞组,血管损伤抑制组,Huvec12转染miR-375组。24h后收集细胞,在mRNA和蛋白水平检测Mtpn、NFκB、profilin1、sICAM1的表达,经荧光染色观察细胞F-actin的变化,再用流式细胞仪检测细胞凋亡。结果:血管损伤细胞中过表达miR-375后,在mRNA和蛋白水平靶基因Mtpn下降,NFκB的表达活性下降,使糖尿病血管病变的标志profilin1下调;F-actin表达恢复;细胞粘附因子(sICAM1)表达下降,细胞凋亡减少。结论:初步证明miR-375可以抑制AGEs介导的糖尿病血管细胞损伤的发生,可能成为糖尿病血管损伤并发症基因治疗的靶点。  相似文献   

13.
Dulak J  Tomala K  Loboda A  Józkowicz A 《Life sciences》2004,75(21):2573-2586
Synthesis of vascular endothelial growth factor (VEGF), the major angiogenic molecule, is induced by nitric oxide (NO) in various cell types, including vascular smooth muscle cells (VSMC). Therefore, compounds which inhibit NO generation can also influence VEGF synthesis. Here we investigated the effect of increased glucose concentration (25 mM vs. 5.5 mM) on cytokine-induced VEGF synthesis in rat VSMC. The cells growing in the medium containing 5.5 mM glucose and exposed to IL-1-beta, TNF-alpha and IFN-gamma induced expression of an inducible isoform of nitric oxide synthase (NOS II). This is followed by generation of NO and the concomitant expression of VEGF gene and release of VEGF protein. In contrast, 25 mM glucose impaired induction of NOS II expression and thus NO synthesis was lower than in 5.5 mM glucose. Consequently, the VEGF promoter activation was attenuated, resulting in decreased mRNA synthesis and lower production of VEGF protein. The results indicate that abnormally high concentrations of glucose can impair generation of NO and the NO-dependent VEGF synthesis. This may play a role in the development and progression of vascular dysfunctions in cardiovascular diseases.  相似文献   

14.
Arterial thrombosis is a critical event in the pathogenesis of lesion development. In this study, we evaluated the effect of heme oxygenase-1 (HO-1), a stress-inducible enzyme with vasoprotective functions, on arterial thrombosis following vascular mechanical injury. The carotid arteries of apoE-deficient mice were subjected to angioplasty with a modified beaded-needle. Arterial thrombosis occurred at 12 h after injury. Treatment of the injured vessels with an adenovirus bearing HO-1 gene (Adv-HO-1) (1× 108 pfu), but not saline or empty adenovirus (Adv), immediately after angioplasty resulted in earlier thrombolysis and restoration of blood flow detected at 24 h. Immunohistochemistry revealed that the arterial plasminogen activator inhibitor-1 (PAI-1) expression was markedly reduced in Adv-HO-1-treated injured arteries as compared to control counterparts. The thrombolytic effect was also observed by exposing animals with existing arterial thrombosis to carbon monoxide (CO) (250 ppm, 2 h), a byproduct derived from heme degradation by HO-1. In parallel with less fibrin(ogen) deposition, the macrophage infiltration, monocyte chemoattractant protein-1 expression and neointimal formation assessed at 2 weeks after angioplasty were substantially reduced in injured arteries treated with Adv-HO-1. These results support a role of early thrombolysis induced by CO in HO-1-mediated protection against intimal hyperplasia after vascular injury.  相似文献   

15.
R Scalia  G Booth  D J Lefer 《FASEB journal》1999,13(9):1039-1046
Vascular endothelial growth factor (VEGF) is an endothelium-specific secreted protein that induces vasodilation and increases endothelial release of nitric oxide (NO). NO is also reported to modulate leukocyte-endothelium interaction. Therefore, we hypothesized that VEGF might inhibit leukocyte-endothelium interaction via increased release of NO from the vascular endothelium. We used intravital microscopy of the rat mesenteric microcirculation to measure leukocyte-endothelium interactions 2, 4, and 24 h after systemic administration of VEGF to the rat (120 microg/kg, i.v., bolus). Superfusion of the rat mesentery with either 0.5 U/ml thrombin or 50 microM L-NAME consistently increased the number of rolling, adhering, and transmigrated leukocytes (P<0.01 vs. control mesenteries superfused with Krebs-Henseleit buffer). At 4 and 24 h posttreatment, VEGF significantly attenuated thrombin-induced and L-NAME-induced leukocyte rolling, adherence, and transmigration in rat mesenteric venules. In addition, adherence of isolated rat PMNs to thrombin-stimulated mesenteric artery segments in vitro was significantly reduced in mesenteric arteries isolated from VEGF-treated rats (P<0.001 vs. control rats). Direct measurement of NO demonstrated a threefold increase in basal NO release from aortic tissue of rats injected with VEGF, at 4 and 24 h posttreatment (P<0. 01 vs. aortic tissue from control rats). Finally, systemic administration of VEGF to ecNOS-deficient mice failed to inhibit leukocyte-endothelium interactions observed in peri-intestinal venules. We concluded that VEGF is a potent inhibitor of leukocyte-endothelium interaction, and this effect is specifically correlated to augmentation of NO release from the vascular endothelium.--Scalia, R., Booth, G., Lefer, D. J. Vascular endothelial growth factor attenuates leukocyte-endothelium interaction during acute endothelial dysfunction: essential role of endothelium-derived nitric oxide.  相似文献   

16.
17.
Cannabinoid receptor CB(2) activation inhibits inflammatory proliferation and migration of vascular smooth muscle cells in vitro. The potential in vivo relevance of these findings is unclear. We performed carotid balloon distension injury in hypercholesterolemic apolipoprotein E knockout (ApoE(-/-)) mice receiving daily intraperitoneal injection of the CB(2) agonist JWH133 (5 mg/kg) or vehicle, with the first injection given 30 min before injury. Alternatively, we subjected CB(2)(-/-) and wild-type (WT) mice to balloon injury. We determined CB(2) mRNA and protein expression in dilated arteries of ApoE(-/-) mice. Neointima formation was assessed histologically. We used bone marrow-derived murine CB(2)(-/-) and WT macrophages to study adhesion to plastic, fibronectin, or collagen, and migration was assayed by modified Boyden chamber. Aortic smooth muscle cells were isolated to determine in vitro proliferation rates. We found increased vascular CB(2) expression in ApoE(-/-) mice in response to balloon injury. Seven to twenty-one days after dilatation, injured vessels of JWH133-treated mice had less intimal nuclei numbers as well as intimal and medial areas, associated with less staining for proliferating cells, smooth muscle cells, and macrophages. Complete endothelial repair was observed after 14 days in both JWH133- and vehicle-treated mice. CB(2) deficiency resulted in increased intima formation compared with WT, whereas JWH133 did not affect intimal formation in CB(2)(-/-) mice. Apoptosis rates assessed by in situ terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling staining 1 h postballooning were significantly higher in the CB(2) knockouts. In vitro, bone marrow-derived CB(2)(-/-) macrophages showed enhanced adherence and migration compared with WT cells and elevated mRNA levels of adhesion molecules, chemokine receptors CCR1 and 5, and chemokine CCL2. Proliferation rates were significantly increased in CB(2)(-/-) smooth muscle cells compared with WT. In conclusion, pharmacological activation or genetic deletion of CB(2) receptors modulate neointima formation via protective effects in macrophages and smooth muscle cells.  相似文献   

18.
Expansive vascular remodeling is considered a feature of vulnerable plaques. Although inflammation is upregulated in the media and adventitia of atherosclerotic lesions, its contribution to expansive remodeling is unclear. We investigated this issue in injured femoral arteries of normo- and hyperlipidemic rabbits fed with a conventional (CD group; n=20) or a 0.5% cholesterol (ChD group; n=20) diet. Four weeks after balloon injury of the femoral arteries, we examined vascular wall alterations, localization of macrophages and matrix metalloproteases (MMP)-1, -2, -9, and extracellular matrix. Neointimal formation with luminal stenosis was evident in both groups, while expansive remodeling was observed only in the ChD group. Areas immunopositive for macrophages, MMP-1, -2 and -9 were larger not only in the neointima, but also in the media and/or adventitia in the injured arterial walls of the ChD, than in the CD group. Areas containing smooth muscle cells (SMCs), elastin and collagen were smaller in the injured arterial walls of the ChD group. MMP-1, -2 and -9 were mainly localized in infiltrating macrophages. MMP-2 was also found in SMCs and adventitial fibroblasts. Vasa vasorum density was significantly increased in injured arteries of ChD group than in those of CD group. These results suggest that macrophages in the media and adventitia play an important role in expansive atherosclerotic remodeling via extracellular matrix degradation and SMC reduction.  相似文献   

19.
Endothelial influences on cerebrovascular tone.   总被引:5,自引:0,他引:5  
The cerebrovascular endothelium exerts a profound influence on cerebral vessels and cerebral blood flow. This review summarizes current knowledge of various dilator and constrictor mechanisms intrinsic to the cerebrovascular endothelium. The endothelium contributes to the resting tone of cerebral arteries and arterioles by tonically releasing nitric oxide (NO*). Dilations can occur by stimulated release of NO*, endothelium-derived hyperpolarization factor, or prostanoids. During pathological conditions, the dilator influence of the endothelium can turn to that of constriction by a variety of mechanisms, including decreased NO* bioavailability and release of endothelin-1. The endothelium may participate in neurovascular coupling by conducting local dilations to upstream arteries. Further study of the cerebrovascular endothelium is critical for understanding the pathogenesis of a number of pathological conditions, including stroke, traumatic brain injury, and subarachnoid hemorrhage.  相似文献   

20.
Age-related macular degeneration (AMD) is the most prevalent cause of blindness in the elderly, and its exsudative subtype critically depends on local production of vascular endothelial growth factor A (VEGF). Mononuclear phagocytes, such as macrophages and microglia cells, can produce VEGF. Their precursors, for example monocytes, can be recruited to sites of inflammation by the chemokine receptor CCR2, and this has been proposed to be important in AMD. To investigate the role of macrophages and CCR2 in AMD, we studied intracellular VEGF content in a laser-induced murine model of choroidal neovascularisation. To this end, we established a technique to quantify the VEGF content in cell subsets from the laser-treated retina and choroid separately. 3 days after laser, macrophage numbers and their VEGF content were substantially elevated in the choroid. Macrophage accumulation was CCR2-dependent, indicating recruitment from the circulation. In the retina, microglia cells were the main VEGF+ phagocyte type. A greater proportion of microglia cells contained VEGF after laser, and this was CCR2-independent. On day 6, VEGF-expressing macrophage numbers had already declined, whereas numbers of VEGF+ microglia cells remained increased. Other sources of VEGF detectable by flow cytometry included in dendritic cells and endothelial cells in both retina and choroid, and Müller cells/astrocytes in the retina. However, their VEGF content was not increased after laser. When we analyzed flatmounts of laser-treated eyes, CCR2-deficient mice showed reduced neovascular areas after 2 weeks, but this difference was not evident 3 weeks after laser. In summary, CCR2-dependent influx of macrophages causes a transient VEGF increase in the choroid. However, macrophages augmented choroidal neovascularization only initially, presumably because VEGF production by CCR2-independent eye cells prevailed at later time points. These findings identify macrophages as a relevant source of VEGF in laser-induced choroidal neovascularization but suggest that the therapeutic efficacy of CCR2-inhibition might be limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号