首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
张琦  焦翔  刘香健  张月  张素芳  赵宗保 《菌物学报》2018,37(11):1454-1465
运用CodonW等软件,分析了圆红冬孢酵母Rhodosporidium toruloides基因组中191个蛋白质编码基因的密码子使用模式,包括密码子3个位置上的GC含量、有效密码子数和密码子使用频率。圆红冬孢酵母有效密码子数ENc值为38.9,密码子GC含量为63%,密码子第三位GC含量为78.3%,且偏好使用G或C结尾的密码子,确定了圆红冬孢酵母R. toruloides的21个高表达优越密码子。研究发现,圆红冬孢酵母与毕赤酵母、酿酒酵母、大肠杆菌和拟南芥在密码子使用频率上有较大差异,而与解脂耶氏酵母和果蝇差异相对较小。研究结果对提高外源基因在圆红冬孢酵母中表达效率及相关代谢工程和合成生物学研究有一定意义。  相似文献   

2.
Chromohalobacter salexigens, a Gammaproteobacterium belonging to the family Halomonadaceae, shows a broad salinity range for growth. In order to reveal the factors influencing architecture of protein coding genes in C. salexigens, pattern of synonymous codon usage bias has been investigated. Overall codon usage analysis of the microorganism revealed that C and G ending codons are predominantly used in all the genes which are indicative of mutational bias. Multivariate statistical analysis showed that the genes are separated along the first major explanatory axis according to their expression levels and their genomic GC content at the synonymous third positions of the codons. Both NC plot and correspondence analysis on Relative Synonymous Codon Usage (RSCU) indicates that the variation in codon usage among the genes may be due to mutational bias at the DNA level and natural selection acting at the level of mRNA translation. Gene length and the hydrophobicity of the encoded protein also influence the codon usage variation of genes to some extent. A comparison of the relative synonymous codon usage between 10% each of highly and lowly expressed genes determines 23 optimal codons, which are statistically over represented in the former group of genes and may provide useful information for salt-stressed gene prediction and gene-transformation. Furthermore, genes for regulatory functions; mobile and extrachromosomal element functions; and cell envelope are observed to be highly expressed. The study could provide insight into the gene expression response of halophilic bacteria and facilitate establishment of effective strategies to develop salt-tolerant crops of agronomic value.  相似文献   

3.
The pandemic of 1918 was caused by an H1N1 influenza A virus, which is a negative strand RNA virus; however, little is known about the nature of its direct ancestral strains. Here we applied a broad genetic and phylogenetic analysis of a wide range of influenza virus genes, in particular the PB1 gene, to gain information about the phylogenetic relatedness of the 1918 H1N1 virus. We compared the RNA genome of the 1918 strain to many other influenza strains of different origin by several means, including relative synonymous codon usage (RSCU), effective number of codons (ENC), and phylogenetic relationship. We found that the PB1 gene of the 1918 pandemic virus had ENC values similar to the H1N1 classical swine and human viruses, but different ENC values from avian as well as H2N2 and H3N2 human viruses. Also, according to the RSCU of the PB1 gene, the 1918 virus grouped with all human isolates and "classical" swine H1N1 viruses. The phylogenetic studies of all eight RNA gene segments of influenza A viruses may indicate that the 1918 pandemic strain originated from a H1N1 swine virus, which itself might be derived from a H1N1 avian precursor, which was separated from the bulk of other avian viruses in toto a long time ago. The high stability of the RSCU pattern of the PB1 gene indicated that the integrity of RNA structure is more important for influenza virus evolution than previously thought.  相似文献   

4.
Codon usage in Clonorchis sinensis was analyzed using 12,515 codons from 38 coding sequences. Total GC content was 49.83%, and GC1, GC2 and GC3 contents were 56.32%, 43.15% and 50.00%, respectively. The effective number of codons converged at 51-53 codons. When plotted against total GC content or GC3, codon usage was distributed in relation to GC3 biases. Relative synonymous codon usage for each codon revealed a single major trend, which was highly correlated with GC content at the third position when codons began with A or U at the first two positions. In codons beginning with G or C base at the first two positions, the G or C base rarely occurred at the third position. These results suggest that codon usage is shaped by a bias towards G or C at the third base, and that this is affected by the first and second bases.  相似文献   

5.
6.
The fungal genus Puccinia, comprising of several menacing pathogens, has been a persistent peril to global agriculture. Genome sequencing of various members of Puccinia offers a scope to excavate their genomic riddles. The present study has been addressed at exploring the complex niceties of codon and amino acid usage patterns and subsequent elucidation of the determinants that drive such behavior. Multivariate statistical analysis revealed a complex interplay of natural selection for translation and compositional bias to be operational on the codon usage patterns. Gene expression level was observed to be the most competent factor governing codon usage behavior of the genus. In spite of subtle AT richness of the genus, potential highly expressed gene sets were found to preferentially employ GC rich optimal codons. Estimation of relative dinucleotide abundance revealed preference toward the employment of GpA, CpA, TpC, and TpG dinucleotides and restraint from using TpA dinucleotide among the members of the genus. Extensive codon context analysis revealed that codon pairs with GpA, CpA, TpC, and TpG dinucleotides were over-represented and codon pairs with TpA dinucleotide were extensively avoided at the codon–codon (cP3–cA1) junctions. Amino acid usage signatures of the genus were found to be influenced considerably by several imperative factors like aromatic and hydrophobic character of the encoded gene products, genomic compositional constraint, and gene expressivity. Detailed know-how of the potential highly expressed gene sets and associated optimal codons in the genus promise to be informative for the scientific community engaged in combating Puccinia pathogenesis.  相似文献   

7.
Mitogen activated protein kinase (MAPK) genes provide resistance to various biotic and abiotic stresses. Codon usage profiling of the genes reveals the characteristic features of the genes like nucleotide composition, gene expressivity, optimal codons etc. The present study is a comparative analysis of codon usage patterns for different MAPK genes in three organisms, viz. Arabidopsis thaliana, Glycine max (soybean) and Oryza sativa (rice). The study has revealed a high AT content in MAPK genes of Arabidopsis and soybean whereas in rice a balanced AT-GC content at the third synonymous position of codon. The genes show a low bias in codon usage profile as reflected in the higher values (50.83 to 56.55) of effective number of codons (Nc). The prediction of gene expression profile in the MAPK genes revealed that these genes might be under the selective pressure of translational optimization as reflected in the low codon adaptation index (CAI) values ranging from 0.147 to 0.208.  相似文献   

8.
Gene paralogs are copies of an ancestral gene that appear after gene or full genome duplication. When two sister gene copies are maintained in the genome, redundancy may release certain evolutionary pressures, allowing one of them to access novel functions. Here, we focused our study on gene paralogs on the evolutionary history of the three polypyrimidine tract binding protein genes (PTBP) and their concurrent evolution of differential codon usage preferences (CUPrefs) in vertebrate species. PTBP1-3 show high identity at the amino acid level (up to 80%) but display strongly different nucleotide composition, divergent CUPrefs and, in humans and in many other vertebrates, distinct tissue-specific expression levels. Our phylogenetic inference results show that the duplication events leading to the three extant PTBP1-3 lineages predate the basal diversification within vertebrates, and genomic context analysis illustrates that local synteny has been well preserved over time for the three paralogs. We identify a distinct evolutionary pattern towards GC3-enriching substitutions in PTBP1, concurrent with enrichment in frequently used codons and with a tissue-wide expression. In contrast, PTBP2s are enriched in AT-ending, rare codons, and display tissue-restricted expression. As a result of this substitution trend, CUPrefs sharply differ between mammalian PTBP1s and the rest of PTBPs. Genomic context analysis suggests that GC3-rich nucleotide composition in PTBP1s is driven by local substitution processes, while the evidence in this direction is thinner for PTBP2-3. An actual lack of co-variation between the observed GC composition of PTBP2-3 and that of the surrounding non-coding genomic environment would raise an interrogation on the origin of CUPrefs, warranting further research on a putative tissue-specific translational selection. Finally, we communicate an intriguing trend for the use of the UUG-Leu codon, which matches the trends of AT-ending codons. Our results are compatible with a scenario in which a combination of directional mutation–selection processes would have differentially shaped CUPrefs of PTBPs in vertebrates: the observed GC-enrichment of PTBP1 in placental mammals may be linked to genomic location and to the strong and broad tissue-expression, while AT-enrichment of PTBP2 and PTBP3 would be associated with rare CUPrefs and thus, possibly to specialized spatio-temporal expression. Our interpretation is coherent with a gene subfunctionalisation process by differential expression regulation associated with the evolution of specific CUPrefs.  相似文献   

9.
Amino acids are essential measurements for the potential growth stage because of connecting to protein structures and functions. The objective of this paper was to analyze chromosomes feature at plastid region of rice represented by nucleotide, synonymous codon, and amino acid usage to predict gene expression through codon usage pattern. The results showed that the values of the codon adaption index ranged from 0.733 in chromosome 9 to 0.631 in chromosome 8 with full length of these two chromosomes were 3738 and 1635 respectively. The higher value of guanine and cytosine content was 60% in chromosomes 9 while the lower values was 37% in chromosomes 11. Eight chromosomes (ch1, ch2, ch3, ch5, ch7, ch8, ch10, and ch12) were greater value of modified relative codon bias than threshold (threshold: 0.66) especially in cysteine for ch1, ch2, ch5, ch10, and ch12. While other remaining chromosomes were less than the threshold. Relative synonymous codon usage found that the over-represented of amino acids were asparagine, aspartate, cysteine, glutamate, and phenylalanine across all 12 chromosomes. These results would establish a platform for more and further projects concerning rice breeding and genetics and codon optimization in the amino acids for developing varieties. These results also will help breeders to select desirable genes through the genome for improve target traits.  相似文献   

10.
 Codon bias and base composition in major histocompatibility complex (MHC) sequences have been studied for both class I and II loci in Homo sapiens and Pan troglodytes. There is low to moderate codon bias for the MHC of humans and chimpanzees. In the class I loci, the same level of moderate codon bias is seen for HLA-B, HLA-C, Patr-A, Patr-B, and Patr-C, while at HLA-A the level of codon bias is lower. There is a correlation between codon usage bias and G+C content in the A and B loci in humans and chimps, but not at the C locus. To examine the effect of diversifying selection on codon bias, we subdivided class I alleles into antigen recognition site (ARS) and non-ARS codons. ARS codons had lower bias than non-ARS codons. This may indicate that the constraint of codon bias on nucleotide substitution may be selected against in ARS codons. At the class II loci, there are distinct differences between alpha and beta chain genes with respect to codon usage, with the beta chain genes being much more biased. Species-specific differences in base composition were seen in exon 2 at the DRB1 locus, with lower GC content in chimpanzees. Considering the complex evolutionary history of MHC genes, the study of codon usage patterns provides us with a better understanding of both the evolutionary history of these genes and the evolution of synonymous codon usage in genes under natural selection. Received: 2 April 1998 / Revised: 2 September 1998  相似文献   

11.
Fuglsang A 《Gene》2008,410(1):82-88
The effective number of codons (Nc) used in a gene is one of the most commonly used measures of synonymous codon usage bias, owing much of its popularity to the fact that it is species independent and that simulation studies have shown that it is less dependent of gene length than other measures. In this paper I provide a clear and practically meaningful definition of bias discrepancy (BD; when the degree of codon bias varies within a degeneracy class). Moreover I evaluate the impact of BD and amino acid usage on estimates of Nc. It is shown that both factors have a significant effect on accuracy and precision. Both amino acid usage and BD influence accuracy considerably, especially in short genes. Finally, I demonstrate how the definition of bias discrepancy can be applied to investigate if codon usage is influenced by selection and I discuss this test in relation to the incongruous literature that exists for Buchnera sp. APS and Borrelia burgdorferi.  相似文献   

12.
Summary Based on the rates of synonymous substitution in 42 protein-codin gene pairs from rat and human, a correlation is shown to exist between the frequency of the nucleotides in all positions of the codon and the synonymous substitution rate. The correlation coefficients were positive for A and T and negative for C and G. This means that AT-rich genes accumulate more synonymous substitutions than GC-rich genes. Biased patterns of mutation could not account for this phenomenon. Thus, the variation in synonymous substitution rates and the resulting unequal codon usage must be the consequence of selection against A and T in synonymous positions. Most of the varition in rates of synonymous substitution can be explained by the nucleotide composition in synonymous positions. Codon-anticodon interactions, dinucleotide frequencies, and contextual factors influence neither the rates of synonymous substitution nor codon usage. Interestingly, the nucleotide in the second position of codons (always a nonsynonymous position) was found to affect the rate of synonymous substitution. This finding links the rate of nonsynonymous substitution with the synonymous rate. Consequently, highly conservative proteins are expected to be encoded by genes that evolve slowly in terms of synonymous substitutions, and are consequently highly biased in their codon usage.  相似文献   

13.
Salim HM  Ring KL  Cavalcanti AR 《Protist》2008,159(2):283-298
We used the recently sequenced genomes of the ciliates Tetrahymena thermophila and Paramecium tetraurelia to analyze the codon usage patterns in both organisms; we have analyzed codon usage bias, Gln codon usage, GC content and the nucleotide contexts of initiation and termination codons in Tetrahymena and Paramecium. We also studied how these trends change along the length of the genes and in a subset of highly expressed genes. Our results corroborate some of the trends previously described in Tetrahymena, but also negate some specific observations. In both genomes we found a strong bias toward codons with low GC content; however, in highly expressed genes this bias is smaller and codons ending in GC tend to be more frequent. We also found that codon bias increases along gene segments and in highly expressed genes and that the context surrounding initiation and termination codons are always AT rich. Our results also suggest differences in the efficiency of translation of the reassigned stop codons between the two species and between the reassigned codons. Finally, we discuss some of the possible causes for such translational efficiency differences.  相似文献   

14.
Airway epithelial cell injury plays a crucial role in the pathogenesis of chronic obstructive pulmonary disease (COPD). However, a novel form of Cu-induced programmed cell death known as cuproptosis has not yet been thoroughly investigated in the context of COPD. Clinical reports have suggested that high copper exposure may increase the risk of COPD. In this study, we aimed to determine the expression and potential functions of cuproptosis-related genes and genes associated with copper metabolism in COPD. We initially identified 52 copper metabolism-related genes based on a review of the literature. Subsequently, we calculated the expression levels of these genes using data from four GEO datasets. To gain insights into the activated signalling pathways and underlying mechanisms in COPD patients, we conducted Gene Ontology (GO) and KEGG pathway analyses, examined protein–protein interactions, and performed weighted correlation network analysis. Our findings revealed that 18 key copper metabolism-related genes, including 5 cuproptosis-related genes, were significantly enriched in signalling pathways and biological processes associated with the development of COPD. Further analysis of clinical data and animal experiments confirmed the high expression of certain cuproptosis key regulators, such as DLD and CDKN2A, in both healthy smokers and COPD smokers. Additionally, these regulators exhibited abnormal expression in a COPD rat model. Notably, copper content was found to be elevated in the lung tissues of COPD rats, suggesting its potential involvement in cuproptosis. These findings provide an experimental foundation for further research into the role of cuproptosis in COPD. Targeting copper metabolism-related genes may represent an effective approach for the treatment of COPD.  相似文献   

15.
Iriarte A  Baraibar JD  Romero H  Musto H 《Gene》2011,473(2):110-118
Mollicutes are parasitic microorganisms mainly characterized by small cell sizes, reduced genomes and great A and T mutational bias. We analyzed the codon usage patterns of the completely sequenced genomes of bacteria that belong to this class. We found that for many organisms not only mutational bias but also selection has a major effect on codon usage. Through a comparative perspective and based on three widely used criteria we were able to classify Mollicutes according to the effect of selection on codon usage. We found conserved optimal codons in many species and study the tRNA gene pool in each genome. Previous results are reinforced by the fact that, when selection is operative, the putative optimal codons found match the respective cognate tRNA. Finally, we trace selection effect backwards to the common ancestor of the class and estimate the phylogenetic inertia associated with this character. We discuss the possible scenarios that explain the observed evolutionary patterns.  相似文献   

16.
Kahali B  Ahmad S  Ghosh TC 《Gene》2011,481(2):76-82
Protein translation has been elucidated to be dictated by evolutionary constraints, namely, variations in tRNA availabilities and/or variations in codon-anticodon binding that is manifested in biased codon usage. Taking advantage of publicly available mRNA expression and protein abundance data for Saccharomyces cerevisiae, we have performed a comprehensive analysis of the diverse factors guiding translation leading to desired protein levels irrespective of the corresponding high or low mRNA levels. It has been elucidated in this study that different combinations of most abundant/non abundant tRNA isoacceptors are selected for in S. cerevisiae that helps in achieving the optimum speed and accuracy in the protein translation process. This is also accompanied by the strategic location of codon pairs in coherence to mRNA secondary structure folding stability for the above mentioned combinations of tRNA isoacceptors. We thus find that codon pair contextual effects; in addition to tRNA abundance and mRNA folding stability during translation elongation process play plausible roles in maintaining translation accuracy and speed that can achieve desired protein levels.  相似文献   

17.
以6种模式生物基因组为样本,从密码对的碱基组成及密码子的使用两方面,分析了最适密码对与稀有密码对的使用。结果显示:6种生物的最适密码对rP双碱基TA出现的频数都是最低的,而出现频率最大的双碱墓对于古菌、细菌、真核是不同的;稀有密码对中双碱基TA出现的频数却是最高的,而出现频率最低的双碱基刘·于古菌、细菌、真核是不同的。这说明双碱基的分布与密码对的偏好性有很强的相关性,同时也与基因组进化存在关联。另外,我们也分析了本文的6种生物编码序列叶,最适密码对与稀有密码对的出现频数与密码了的相对使用频率的关系,发现密码对的出现频数与其密码子的使用存在相关性。  相似文献   

18.
The frequencies of polymorphisms of CYP1A1 (2455A/G, 3801T/C) and CYP1A2 (?2464T/delT, ?163C/A) were determined in healthy residents of Bashkortostan (Russians, Tatars, and Bashkirs) and tested for association with chronic obstructive pulmonary disease (COPD). Interethnic differences in the frequency distribution of the CYP1A1 and CYP1A2 polymorphisms were significant. In Tatars and Russians, the CYP1A1 and CYP1A2 haplotype frequencies were similar (χ2 = 0.973, df = 3, P = 1.00 and χ2 = 1.546, df = 3, P = 0.92, respectively). In Bashkirs, the CYP1A1 haplotype frequencies significantly differed from those in Russians and Tatars (χ2 = 12.328, df = 3, P = 0.008 and χ2 = 9.218, df = 3, P = 0.034, respectively) owing to a high frequency of CYP1A1*2B (10.17%). Similarly, Bashkirs differed from Russians and Tatars in the CYP1A2 haplotype frequencies (χ2 = 18.779, df = 3, P = 0.0001 and χ2 = 14.326, df = 3, P = 0.003, respectively). The frequency of the CYP1A2*1D haplotype in Bashkirs was 11.02% in contrast to 2.36% in Tatars and 1.61% in Russians. Allele *D of the CYP1A2 ?2467delT polymorphism was associated with COPD in Tatars (OR = 1.83, 95%CI 1.24–2.71, χ2 = 9.48, P = 0.003). CYP1A2*1D was associated with an increased risk of COPD (8.65% vs. 2.36% in controls, χ2 = 9.733, P = 0.0027, P cor = 0.008, OR = 3.908, 95%CI 1.56–10.19). Haplotype CYP1A2*1A was significantly less frequent in patients with COPD (21.05% vs. 30.74%, χ2 = 6.319, P = 0.0127, P cor = 0.038, OR = 0.6012, 95%CI 0.402–0.898). The CYP1A1 polymorphisms were not associated with COPD in residents of Bashkortostan.  相似文献   

19.
H Grosjean  W Fiers 《Gene》1982,18(3):199-209
By considering the nucleotide sequence of several highly expressed coding regions in bacteriophage MS2 and mRNAs from Escherichia coli, it is possible to deduce some rules which govern the selection of the most appropriate synonymous codons NNU or NNC read by tRNAs having GNN, QNN or INN as anticodon. The rules fit with the general hypothesis that an efficient in-phase translation is facilitated by proper choice of degenerate codewords promoting a codon-anticodon interaction with intermediate strength (optimal energy) over those with very strong or very weak interaction energy. Moreover, codons corresponding to minor tRNAs are clearly avoided in these efficiently expressed genes. These correlations are clearcut in the normal reading frame but not in the corresponding frameshift sequences +1 and +2. We hypothesize that both the optimization of codon-anticodon interaction energy and the adaptation of the population to codon frequency or vice versa in highly expressed mRNAs of E. coli are part of a strategy that optimizes the efficiency of translation. Conversely, codon usage in weakly expressed genes such as repressor genes follows exactly the opposite rules. It may be concluded that, in addition to the need for coding an amino acid sequence, the energetic consideration for codon-anticodon pairing, as well as the adaptation of codons to the tRNA population, may have been important evolutionary constraints on the selection of the optimal nucleotide sequence.  相似文献   

20.
Jian-hua Zhou 《Bio Systems》2010,101(1):20-595
The mechanism of utilization of alternative two AUGs in foot-and-mouth disease virus (FMDV) is still unknown to date. In this study, the characteristics of codon usage bias (CUB) of the region between the two AUGs (the region-La) and of the same-sized region behind the second AUG (the region-Lb) in 94 different FMDV RNA sequences were analyzed using relative synonymous codon usage (RSCU) values. The results indicated that many codons with negative CUB were preferentially used in the region-La. There were two conserved residues (Thr and Cys) on the 4th and 6th residue positions of the region-La. The conserved residues had a general tendency to choose synonymous codons with negative CUB. Although most positions in the region-La did not contain conserved residues, many positions tended to use codons with negative CUB in this region. Among these codons, the majority belonged to the amino acids containing synonymous codons with clearly positive and negative CUB, including Asp, Val, Ile, Leu, Thr, Ala, Ser, Asn and Arg. The presence of many codons with negative CUB in the region-La might impair the efficiency of the first AUG selection. The phylogenetic incongruence of the region-La and the region-Lb implied that intertypic recombination played an important role in the evolution of FMDV. Furthermore, due to the existence of more positions with positive CUB and more widespread phylogenetic incongruence in the region-Lb than the region-La, a probable relationship between the degree of CUB and the evolution of the two target regions was revealed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号