首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用137Cs技术研究黑土坡耕地土壤再分布特征   总被引:5,自引:0,他引:5  
利用137Cs示踪技术和不同的理论模型研究典型的东北漫岗地形的黑土土壤再分布状况.通过野外采样和模型分析,得出研究区137Cs背景值为2 232.75 Bq·m-2,介于长江三角洲和黄土高原背景值之间,表明137Cs沉降与纬度和降水相关.研究区各地貌部位137Cs含量在水平方向和深度分布上有很大的分异.坡肩部位137Cs含量最低,土壤侵蚀最为强烈;坡顶和坡背侵蚀较为微弱;坡脚和坡足基本上表现土壤沉积.137Cs分布深度从坡肩20 cm到坡足80 cm土层,表现出该区经历了强烈的侵蚀和沉积过程.文中采用4种常用的137Cs土壤侵蚀模型估计研究区的土壤侵蚀速率,结果表明,PM模型明显低估了土壤侵蚀速率,MBM-1明显高估了土壤侵蚀速率,MBM-2和MBM-3估计的结果较为相近的合理结果.  相似文献   

2.
双特异性磷酸酶8(dual-specificity phosphatase 8, DUSP8)是双特异性蛋白磷酸酶家族的成员之一,被报道参与多个疾病发生过程。然而,DUSP8是否参与巨噬细胞等免疫细胞炎性应答过程,目前仍未有研究证实。本研究旨在检测DUSP8在脂多糖(LPS)诱导的巨噬细胞炎症反应中的表达,并探讨过表达DUSP8在巨噬细胞炎症反应的作用。利用100 ng/mL LPS刺激野生型C57BL/6小鼠骨髓来源巨噬细胞(bone marrow derived macrophage,BMDM),分别在不同时间点收取细胞,实时PCR和Western 印迹检测发现LPS处理后,BMDM中DUSP8的表达水平明显降低(P<0.05),且在12 h达到最低值;随后,分别转染DUSP8过表达载体(DUSP8-EGFP)和对照载体(EGFP)于BMDM,Western 印迹检测发现DUSP8-EGFP转染能够显著上调DUSP8的表达水平(P<0.05);进一步用流式细胞术(flow cytometry, FCM)检测发现DUSP8过表达使巨噬细胞表面分子CD80和CD86的表达显著下调(P<0.05);同时,中性红吞噬实验结果显示,DUSP8过表达后巨噬细胞的吞噬能力明显降低(P<0.05);此外,ELISA (enzyme linked immunosorbent assay)检测结果显示,过表达DUSP8显著降低IL-1β,IL-6的表达水平(P<0.05);最后,Western 印迹结果显示,JNK和p38 MAPK的磷酸化水平在DUSP8过表达组中明显降低(P<0.05)。以上表明,DUSP8过表达可显著改善LPS诱导的巨噬细胞炎症反应,其机制主要通过抑制JNK和p38 MAPK的活化。  相似文献   

3.
4.
5.
CD137 (also called 4-1BB and TNFRSF9) has recently received attention as a therapeutic target for cancer and a variety of autoimmune and inflammatory diseases. Stimulating CD137 in vivo enhances CD8(+) T cell-activity and results in strong immunosuppression in some contexts. This paradoxical phenomenon may be partially explained by the ability of CD137-stimulating reagents (usually agonistic monoclonal antibodies against CD137) to overactivate T cells and other CD137-expressing cells. This over-activity is associated with deleting pathogenic T cells and B cells or generating a tolerogenic microenvironment. Recent studies, however, suggest that the biology of CD137 and its ligand (CD137L) are more complex, mainly due to bidirectional signaling between CD137 and CD137L. For example, signaling through CD137L in non-hematopoietic cells such as epithelial cells and endothelial cells has been shown to play an essential role in sterile inflammation by regulating immune cell recruitment. One outstanding, and clinically important, issue is understanding how bidirectional signaling through CD137 and CD137L controls the vicious cycle of sterile inflammation (e.g., ischemia-reperfusion tissue injury and meta-inflammatory diseases).  相似文献   

6.
We previously reported the emerging role of CD137–CD137L interaction in inflammation and atherosclerosis. The mechanism of CD137–CD137L interaction may be related to a variety of signaling pathways. The most important signaling pathway involves the activation of phospholipase C(PLC) which induces the diacylglycerol–protein kinase C(DAG–PKC) and the inositol trisphosphate-intracellular free calcium (IP3-[Ca2+]i) pathway. In the current study, we investigated whether CD137–CD137L interaction can stimulate the PLC signaling pathway in human umbilical vein endothelial cells (HUVEC). The diacylglycerol (DAG) and inositol trisphosphate (IP3) levels in HUVEC were measured by radioenzymatic assay. The activity of protein kinase (PKC) was detected by its ability to transfer phosphate from [γ-32P]ATP to lysine-rich histone. The [Ca2+]i concentrations were measured by flow cytometric analysis. The DAG level and PKC activity were increased in a concentration-dependent, biphasic manner in HUVEC induced by anti-CD137. PKC activity was mainly in the cytosol at rest, and then translocated to the membrane when stimulated by anti-CD137. Similarly, rapid IP3 formation induced by anti-CD137 coincided with the peak of the DAG level. Moreover, anti-CD137 induced peak [Ca2+]i responses including the rapid transient phase and the sustained phase. However, anti-CD137L suppressed the activation of the DAG–PKC and IP3-[Ca2+]i signaling pathway, which was stimulated by anti-CD137 in HUVEC. In conclusion, the data suggested that CD137–CD137L interaction induces robust activation of the PLC signaling pathway in HUVEC.  相似文献   

7.
CUX1 and CUX2 proteins are characterized by the presence of three highly similar regions called Cut repeats 1, 2, and 3. Although CUX1 is ubiquitously expressed, CUX2 plays an important role in the specification of neuronal cells and continues to be expressed in postmitotic neurons. Cut repeats from the CUX1 protein were recently shown to stimulate 8-oxoguanine DNA glycosylase 1 (OGG1), an enzyme that removes oxidized purines from DNA and introduces a single strand break through its apurinic/apyrimidinic lyase activity to initiate base excision repair. Here, we investigated whether CUX2 plays a similar role in the repair of oxidative DNA damage. Cux2 knockdown in embryonic cortical neurons increased levels of oxidative DNA damage. In vitro, Cut repeats from CUX2 increased the binding of OGG1 to 7,8-dihydro-8-oxoguanine-containing DNA and stimulated both the glycosylase and apurinic/apyrimidinic lyase activities of OGG1. Genetic inactivation in mouse embryo fibroblasts or CUX2 knockdown in HCC38 cells delayed DNA repair and increased DNA damage. Conversely, ectopic expression of Cut repeats from CUX2 accelerated DNA repair and reduced levels of oxidative DNA damage. These results demonstrate that CUX2 functions as an accessory factor that stimulates the repair of oxidative DNA damage. Neurons produce a high level of reactive oxygen species because of their dependence on aerobic oxidation of glucose as their source of energy. Our results suggest that the persistent expression of CUX2 in postmitotic neurons contributes to the maintenance of genome integrity through its stimulation of oxidative DNA damage repair.  相似文献   

8.
9.
白细胞介素—8扩血管效应与内皮舒张因子的关系   总被引:7,自引:0,他引:7  
为探讨内皮舒张因子在白细胞介素-8(IL-8)扩血管效应中的作用,本实验在大鼠离体主动脉条上,观察IL-8对血管反应性及血管组织cGMP含量的影响。实验发现,IL-8显著地扩张离体血管,其作用在去内皮后明显减弱。IL-8还能显著地提高离体血管组织cGMP含量,一氧化氮合成抑制剂L-NNA可阻断这一作用,一氧化氮前体L-精氨酸可逆转L-NNA的效应。结果表明IL-8可以通过促进血管内皮细胞释放一氧化氮而扩张血管。  相似文献   

10.
Roles of reactive oxygen species (ROS) in damage to mitochondrial DNA (mtDNA) following ultraviolet (UV)-irradiation were investigated in the human hepatoma cell line SK-HEP-1. We altered the intracellular status of ROS by the overexpression of manganese superoxide dismutase (MnSOD) and/or catalase. Using HPLC, we analyzed 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo), known as a marker of damage to DNA molecules. UV-irradiation resulted in the accumulation of 8-oxodGuo in these cells. The overexpression of MnSOD enhanced the accumulation of 8-oxodGuo by UV. The co-overexpression of catalase inhibited the accumulation of 8-oxodGuo by UV in MnSOD-transfectants. The overexpression of MnSOD reduced the colony forming capacity in SK-HEP-1 cells and the co-overexpression of catalase with MnSOD stimulated the capacity compared to control. UV-irradiation inhibited the colony forming capacity in these cells; no difference was observed among the capacities of control, MnSOD- and catalase-transfectants. However, the overexpression of MnSOD/catalase significantly rescued the reduction of colony forming capacity by UV-irradiation. Our results suggest that the accumulation of hydrogen peroxide plays a key role in the oxidative damage to mtDNA of UV-irradiated cells, and also that the overexpression of both MnSOD and catalase reduces the mtDNA damage and blocks the growth inhibition by UV. Our results also indicate that the increased activity of MnSOD may lead to a toxic effect on mtDNA by UV-irradiation.  相似文献   

11.
Increased blood-DNA breakage was observed in diseased pearl oysters. They showed significant formation of 8-hydroxydeoxyguanosine (8-OHdG) and malondialdehyde (MDA), whereas the oysters that had a low mortality rate from the disease had high activity of superoxide dismutase (SOD) and low amounts of 8-OHdG and MDA. These results suggest that radical damage had occurred only in the diseased pearl oysters with the cytolysis of their haemocytes, which was related to the mass mortality of the Japanese pearl oysters.  相似文献   

12.
《Free radical research》2013,47(12):1469-1478
ABSTRACT

Animal studies have shown that exposure to nonylphenol (NP) increases oxidative/nitrative stress, but whether it does so in humans is unknown. This study examines prenatal exposure to NP and its effects on oxidatively/nitratively damaged DNA, lipid peroxidation, and the activities of antioxidants. A total of 146 urine and blood specimens were collected during gestational weeks 27–38 and hospital admission for delivery, respectively. Urinary NP was analyzed by high-performance liquid chromatography (HPLC). Urinary biomarkers of oxidatively/nitratively damaged DNA and lipid peroxidation, including 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodG), 8-nitroguanine (8-NO2Gua), 8-iso-prostaglandin F (8-isoPF) and 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA), were simultaneously analyzed using isotope-dilution liquid-chromatography/electron spray ionization tandem mass spectrometry. The activities of maternal plasma superoxide dismutase and glutathione peroxidase were analyzed by enzyme-linked immunosorbent assay. Urinary NP level was significantly associated with 8-oxodG and 8-NO2Gua levels in late pregnancy, suggesting that NP may enhance oxidatively and nitratively damaged DNA. The adjusted odds ratios for high 8-oxodG level exhibited a significantly dose–response relationship with NP levels, stratified into four quartiles. 8-oxodG appears to be a more sensitive and effective biomarker of NP exposure than 8-NO2Gua. These relationships suggest NP may play a role in the pregnancy complications.  相似文献   

13.
The cellular pool of ribonucleotide triphosphates (rNTPs) is higher than that of deoxyribonucleotide triphosphates. To ensure genome stability, DNA polymerases must discriminate against rNTPs and incorporated ribonucleotides must be removed by ribonucleotide excision repair (RER). We investigated DNA polymerase β (POL β) capacity to incorporate ribonucleotides into trinucleotide repeated DNA sequences and the efficiency of base excision repair (BER) and RER enzymes (OGG1, MUTYH, and RNase H2) when presented with an incorrect sugar and an oxidized base. POL β incorporated rAMP and rCMP opposite 7,8-dihydro-8-oxoguanine (8-oxodG) and extended both mispairs. In addition, POL β was able to insert and elongate an oxidized rGMP when paired with dA. We show that RNase H2 always preserves the capacity to remove a single ribonucleotide when paired to an oxidized base or to incise an oxidized ribonucleotide in a DNA duplex. In contrast, BER activity is affected by the presence of a ribonucleotide opposite an 8-oxodG. In particular, MUTYH activity on 8-oxodG:rA mispairs is fully inhibited, although its binding capacity is retained. This results in the reduction of RNase H2 incision capability of this substrate. Thus complex mispairs formed by an oxidized base and a ribonucleotide can compromise BER and RER in repeated sequences.  相似文献   

14.
HHV-8-GPCR is a chemokine-like receptor encoded by KSHV, the etiologic agent of KS. HHV-8-GPCR is constitutively active. Although it is homologous to mammalian CXCR2, it binds CXC and CC chemokines. Structure-function analysis showed that chemokines bind primarily to the amino terminus whereas signaling occurs in the absence of: the amino terminus, which is, therefore, not a tethered agonist. In in vitro systems, HHV-8-GPCR signals via multiple transduction pathways including, activation of phospholipase C and PKC, inhibition of adenylyl cyclase, activation of nuclear factor-κB; activation PI 3-kinase, p42/44 MAPK and Akt/PKB, and activation of JNK/SAPK, p38 MAPK and RAFTK. HHV-8-GPCR is important in the HHV-8 life cycle because HHV-8-GPCR-deficient viruses do not replicate in response to chemokines and exhibit, less efficient reactivation from latency. Although the role of HHV-8-GPCR in the pathogenesis of KS has not been defined, expression of HHV-8-GPCR resulted in the development of angioproliferative, KS-like tumors in transgenic mice. As endothelial cells may be targets of HHV-8 infection, HHV-8-GPCR has been studied in endothelial cells in vitro in which it affects cell adhesion and migration, increases cell survival, and stimulates secretion of proinflammatory cytokines and proangiogenic factors. Based on these findings and the observation that HHV-8-GPCR is expressed in only a few endothelial- like "spindle cells" within KS lesions, we propose that HHV-8-GPCR is involved in KS pathogenesis by stimulating secretion of proinflammatory/proangiogenic factors that act in a paracrine fashion to cause tumorigenesis.  相似文献   

15.
At least two phenotypes of lake charr, Salvelinus namaycush, coexist in Lake Superior. A lean morph frequents the shallow inshore waters (< 50m) and the fat morph (siscowet) occupies the deeper offshore waters (50–250 m). The objective of this study was to determine if the elevated lipid concentration of siscowets reduces the costs of swimming in deep water. First, we modelled the effects of body composition (lipids) on the costs of swimming by lake charr, and then compared these theoretical results with empirical evidence obtained from Cesium 137-based estimates of food consumption, gross energy conversion, and swimming costs (activity multiplier). The attributes of growth, energy content (kJg-1), lipid concentrations, and Cesium 137 concentration (Bqg-1) were obtained from multimesh gillnet catches in eastern Lake Superior (1998 and 1999). The model showed that siscowet (fat) lake charr expended less energy than lean lake charr moving through the water column. Empirical evidence derived from Cesium 137 analysis confirmed that the activity multipliers of siscowets (fat) were less than those for lean charr. These findings support the view that the restoration of the fish community of the predominately deep water of the Great Lakes might be facilitated by the introduction of the fat phenotype.  相似文献   

16.
C Dong  H Wang  L Xue  Y Dong  L Yang  R Fan  X Yu  X Tian  S Ma  GW Smith 《RNA (New York, N.Y.)》2012,18(9):1679-1686
Coat color is a key economic trait in wool-producing species. Color development and pigmentation are controlled by complex mechanisms in animals. Here, we report the first production of an altered coat color by overexpression of miR-137 in transgenic mice. Transgenic mice overexpressing miR-137 developed a range of coat color changes from dark black to light color. Molecular analyses of the transgenic mice showed decreased expression of the major target gene termed MITF and its downstream genes, including TYR, TYRP1, and TYRP2. We also showed that melanogenesis altered by miR-137 is distinct from that affected by UV radiation in transgenic mice. Our study provides the first mouse model for the study of coat color controlled by miRNAs in animals and may have important applications in wool production.  相似文献   

17.
分析了137Cs及土壤有机碳(SOC)在桂西北典型峰丛坡地及岩溶裂隙中的剖面分布特征,探讨了137Cs方法在喀斯特坡地的适用性及其指示的坡面土壤侵蚀特征.结果表明:所有剖面137Cs与SOC均显著相关,两者可能有相同的流失途径;次生林坡地137Cs主体分布深度在24 cm以内,中上及中坡剖面随深度呈指数递减分布,地表无侵蚀或侵蚀轻微,坡脚剖面呈较严重侵蚀形态;坡耕地剖面137Cs在耕层内均匀分布,中上坡及中坡主体分布深度在15 cm左右,面积活度远低于背景值,土壤侵蚀剧烈,坡脚分布深度至45 cm,呈堆积形态;次生林坡脚剖面、耕地中上坡剖面及所有裂隙剖面,137Cs在主体分布深度以下有断续极微量的分布,指示了喀斯特坡地土壤颗粒有随降雨沿地表负地形向地下流失的趋势,但流失量轻微.  相似文献   

18.
Abstract

In model studies directed to the total synthesis of guanofosfocins, a unique glycosidic bond formation between the 8-oxo-purine nucleosides and mannopyranose derivatives under Mistunobu conditions is described.  相似文献   

19.
The 100,000 × g extracts of rat intestine and colon were incubated invitro with Na2[75Se]O3. Chromatography of this material on a Sephadex G-100 column produced three radioactive peaks corresponding to molecular weights of 17,000, 68,000 and > 90,000. The 17,000 peak corresponded to a protein which sedimented in the 2S region of a 5–20% (wv) linear sucrose density gradient. Selenium binding to this protein was specific, stable and sensitive to thiol inhibitors such as p-chloromercuriphenylsulfonic acid (1 mM) and iodoacetamide (2 mM). Chromatography of rat serum - [75Se] complex on Sephadex G-100 yielded only two radioactive peaks that corresponded to molecular weights of 68,000 and > 90,000. The 2S selenium binding protein of intestine and colon may mediate the biological functions of selenium in those tissues.  相似文献   

20.
Dyes exposure in aquatic environment creates risks to human health and biota due to their intrinsic toxic mutagenic and carcinogenic characteristics. In this work, a metal-organic frameworks materials, zeolitic imidazolate framework-8 (ZIF-8), was synthesized through hydrothermal reaction for the adsorptive removal of harmful Congo red (CR) from aqueous solution. Results showed that the maximum adsorption capacity of CR onto ZIF-8 was ultrahigh as 1250 mg g?1. Adsorption behaviors can be successfully fitted by the pseudo-second order kinetic model and the Langmuir isotherm equation. Solution conditions (pH condition and the co-exist anions) may influent the adsorption behaviors. The adsorption performance at various temperatures indicated the process was a spontaneous and endothermic adsorption reaction. The enhanced adsorption capacity was determined due to large surface area of ZIF-8 and the strong interactions between surface groups of ZIF-8 and CR molecules including the electrostatic interaction between external active sites Zn?OH on ZIF-8 -and ?SO3 or –N=N– sites in CR molecule, and the ππ interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号